重置
序号 ID 年级 类型 来源 摘要 创建时间
27591 59367750c2b4e7000a085454 高中 解答题 高考真题 如图,$O$ 为坐标原点,椭圆 ${C_1}:\dfrac{x^2}{a^2}+ \dfrac{y^2}{b^2}= 1$($a > b > 0$)的左、右焦点分别为 ${F_1},{F_2}$,离心率为 ${e_1}$;双曲线 ${C_2}:\dfrac{x^2}{a^2}- \dfrac{y^2}{b^2}= 1$ 的左、右焦点分别为 ${F_3},{F_4}$,离心率为 ${e_2}$.已知 ${e_1}{e_2}= \dfrac{\sqrt 3}{2}$,且 $\left|{{F_2}{F_4}}\right| = \sqrt 3 - 1$. 2022-04-17 21:42:05
27590 5936979fc2b4e70009388262 高中 解答题 高中习题 已知 $MN$ 是过椭圆 $\dfrac{x^2}9+\dfrac{y^2}5=1$ 的左焦点 $F$ 的直线($M,N$ 在椭圆上),$A(1,0)$ 是椭圆长轴上的一个定点.直线 $MA,NA$ 分别交椭圆于 $P,Q$,求证:直线 $MN$ 与直线 $PQ$ 的斜率之比为定值. 2022-04-17 21:41:05
27588 590823c7060a050008e621ef 高中 解答题 高考真题 已知点 $A(0,-2)$,椭圆 $E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1(a>b>0)$ 的离心率为 $\dfrac{\sqrt3}{2}$,$F$ 是椭圆 $E$ 的右焦点,直线 $AF$ 的斜率为 $\dfrac{2\sqrt3}{3}$,$O$ 为坐标原点. 2022-04-17 21:40:05
27569 590932b4060a050008cff41e 高中 解答题 高中习题 已知椭圆 $E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ 的长轴上(不包含端点)有点 $M(m,0)$($-a<m<a$),过 $M$ 作互相垂直线的两条弦 $AC,BD$,探索凸四边形 $ABCD$ 的面积的取值范围,研究当 $m$ 取什么值时,该取值范围较容易求出. 2022-04-17 21:28:05
27568 593e22be2da6d2000a9865c7 高中 解答题 高中习题 已知椭圆 $E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$($a>b>0$),圆 $O$ 以椭圆 $E$ 的短轴为直径.设 $AB$ 是椭圆 $E$ 的弦且与圆 $O$ 相切,椭圆的一个焦点 $F$ 与弦 $AB$ 在 $y$ 轴同侧,求证:$\triangle FAB$ 的周长为定值 $2a$. 2022-04-17 21:28:05
27523 59094781060a05000b3d1f66 高中 解答题 高考真题 已知椭圆 $C:x^2+2y^2=4$. 2022-04-17 21:05:05
27520 59094970060a05000970b35b 高中 解答题 自招竞赛 一条直线与双曲线交于 $A,B$ 两点,与此双曲线的渐近线交于 $C,D$ 两点,证明:线段 $AC$ 与 $BD$ 的长度相等. 2022-04-17 21:03:05
27516 5943b3eda26d28000a4db400 高中 解答题 高中习题 已知椭圆 $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$($a>b>0$)的离心率 $e=\dfrac 12$,过焦点且垂直于 $x$ 轴的直线被椭圆截得的线段长为 $3$. 2022-04-17 21:00:05
27515 5943b3eea26d28000a4db404 高中 解答题 高中习题 已知椭圆 $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$($a>b>0$)的离心率 $e=\dfrac 12$,过焦点且垂直于 $x$ 轴的直线被椭圆截得的线段长为 $3$. 2022-04-17 21:59:04
27511 5945f6c2a26d28000a4db41b 高中 解答题 高中习题 在椭圆 $\dfrac{x^2}4+\dfrac{y^2}3=1$ 中,直线 $l$ 与椭圆交于 $A,B$ 两点,直线 $AB$ 不过点 $P(2,0)$,且以 $AB$ 为直径的圆恒过点 $P(2,0)$,求证:直线 $AB$ 恒过定点,并求该定点的坐标. 2022-04-17 21:58:04
27510 5945f6bfa26d280008874a22 高中 解答题 高中习题 在椭圆 $\dfrac{x^2}4+\dfrac{y^2}3=1$ 中,直线 $l$ 与椭圆交于 $A,B$ 两点,直线 $AB$ 不过点 $P(2,0)$,且以 $AB$ 为直径的圆恒过点 $P(2,0)$,求证:直线 $AB$ 恒过定点,并求该定点的坐标. 2022-04-17 21:58:04
27508 59461725a26d28000bb86ea5 高中 解答题 高中习题 已知椭圆 $E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$($a>b>0$)所在平面内有一个不与原点重合的点 $P(x_0,y_0)$,过 $P$ 作 $E$ 的任意两条割线 $AB,CD$,其中 $A,B,C,D$ 均在椭圆 $E$ 上.证明:直线 $AC$ 和 $BD$ 的交点在定直线上. 2022-04-17 21:56:04
27487 59096cf739f91d000a7e44af 高中 解答题 高中习题 平面直角坐标系 $xOy$ 中有两定点 $P(x_1,y_1)$,$Q(x_2,y_2)$,分别过点 $P$ 和点 $Q$ 作直线 $l_1,l_2$,且 $l_1\perp l_2$,若直线 $l_1$ 交 $x$ 轴于点 $A$,直线 $l_2$ 交 $y$ 轴于点 $B$,求线段 $AB$ 中点 $M$ 的轨迹. 2022-04-17 21:43:04
27486 59096d7b39f91d0009d4bf86 高中 解答题 高考真题 已知双曲线 $E:\dfrac{x^2}{a^2} - \dfrac{y^2}{b^2} = 1\left(a > 0,b > 0\right)$ 的两条渐近线分别为 ${l_1}:y = 2x$,${l_2}:y = - 2x$. 2022-04-17 21:42:04
27485 59096f6d39f91d000a7e44c3 高中 解答题 高考真题 已知曲线 $\varGamma$ 上的点到点 $F\left(0,1\right)$ 的距离比它到直线 $y = - 3$ 的距离小 $2$. 2022-04-17 21:42:04
27472 5946172aa26d280009c98c17 高中 解答题 高中习题 已知椭圆 $E:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$($a>b>0$)所在平面内有一个不与原点重合的点 $P(x_0,y_0)$,过 $P$ 作 $E$ 的任意两条割线 $AB,CD$,其中 $A,B,C,D$ 均在椭圆 $E$ 上.证明:直线 $AC$ 和 $BD$ 的交点在定直线上. 2022-04-17 21:34:04
27469 590974d939f91d0009d4bfbe 高中 解答题 高考真题 已知椭圆 $C:\dfrac{x^2}{a^2} + \dfrac{y^2}{b^2} = 1\left(a > b > 0\right)$ 的一个焦点为 $\left(\sqrt 5 ,0\right)$,离心率为 $\dfrac{\sqrt 5 }{3}$. 2022-04-17 21:32:04
27460 5909855339f91d0008f05040 高中 解答题 高中习题 如图,已知圆 $x^2+y^2=r^2$($r>0$)内有一定点 $A(a,0)$($0<a<r$),$B$ 是圆上的一个动点.作矩形 $ABCD$,其中点 $D$ 在圆上.求矩形的顶点 $C$ 的轨迹方程. 2022-04-17 21:26:04
27459 5909864a39f91d0008f0504e 高中 解答题 高考真题 如图,$O$ 为坐标原点,椭圆 ${C_1}:\dfrac{x^2}{a^2}+ \dfrac{y^2}{b^2}= 1$($a > b > 0$)的左、右焦点分别为 ${F_1},{F_2}$,离心率为 ${e_1}$;双曲线 ${C_2}:\dfrac{x^2}{a^2}- \dfrac{y^2}{b^2}= 1$ 的左、右焦点分别为 ${F_3},{F_4}$,离心率为 ${e_2}$.已知 ${e_1}{e_2}= \dfrac{\sqrt 3}{2}$,且 $\left|{{F_2}{F_4}}\right| = \sqrt 3 - 1$. 2022-04-17 21:26:04
27455 590987b739f91d0007cc9397 高中 解答题 高考真题 如图,$O$ 为坐标原点,双曲线 ${C_1}:\dfrac{x^2}{a_1^2}- \dfrac{y^2}{b_1^2}= 1\left({a_1}> 0,{b_1}> 0\right)$ 和椭圆 ${C_2}:\dfrac{y^2}{a_2^2}+ \dfrac{x^2}{b_2^2}= 1\left({a_2}>{b_2}> 0\right)$ 均过点 $P\left(\dfrac{2\sqrt 3}{3},1\right)$,且以 ${C_1}$ 的两个顶点和 ${C_2}$ 的两个焦点为顶点的四边形是面积为 $2$ 的正方形. 2022-04-17 21:23:04
0.147261s