重置
序号 ID 年级 类型 来源 摘要 创建时间
26532 5927d15d50ce840007247a94 高中 解答题 高考真题 已知函数 $f\left(x\right)$ 的图像在 $[a,b]$ 上连续不断,定义:\[\begin{split}&{f_1}\left(x\right) = \min \left\{ f\left(t\right)\left|\right.a \leqslant t \leqslant x\right\} \left(x \in \left[a,b\right]\right),\\&{f_2}\left(x\right) = \max \left\{ f\left(t\right)\left|\right.a \leqslant t \leqslant x\right\} \left(x \in \left[a,b\right]\right).\end{split}\]其中 $\min \left\{ f\left(x\right)\left|\right.x \in D\right)$ 表示函数 $f\left(x\right)$ 在 $D$ 上的最小值,$\max \left\{ f\left(x\right)\left|\right.x \in D\right)$ 表示函数 $f\left(x\right)$ 在 $D$ 上的最大值.若存在最小正整数 $k$,使得 ${f_2}\left(x\right) - {f_1}\left(x\right) \leqslant k\left(x - a\right)$ 对任意的 $x \in \left[a,b\right]$ 成立,则称函数 $f\left(x\right)$ 为 $\left[a,b\right]$ 上的" $k$ 阶收缩函数". 2022-04-17 20:53:55
26373 5927d95250ce84000aaca991 高中 解答题 高考真题 已知集合 ${S_n} = \left\{ X \mid X = \left({x_1},{x_2}, \ldots ,{x_n}\right),{x_i} \in \left\{ 0,1\right\} ,i = 1,2, \cdots ,n\right\} \left(n \geqslant 2\right)$,对于 $A = \left({a_1},{a_2}, \cdots , {a_n} \right)$,$B = \left({b_1},{b_2}, \cdots {b_n},\right) \in {S_n}$,定义 $ A $ 与 $ B $ 的差为 $A - B = \left(|{a_1} - {b_1}|,|{a_2} - {b_2}|, \cdots ,|{a_n} - b_n|\right)$;$ A $ 与 $ B $ 之间的距离为 $\displaystyle d\left(A,B\right) = \sum\limits_{i = 1}^{n} |{a_i} - {b_i}|$. 2022-04-17 20:20:54
26355 592e1943eab1df00095843f1 高中 解答题 高考真题 若有穷数列 $\{a_n\}$ 满足:
① 首项 $a_1=1$,末项 $a_m=k$;
② $a_{n+1}=a_n+1$ 或 $a_{n+1}=2a_n$,其中 $n=1,2,\cdots,m-1$;
则称数列 $\{a_n\}$ 为 $k$ 的 $m$ 阶数列.
2022-04-17 20:10:54
26353 592e1a37eab1df0007bb8c8f 高中 解答题 高考真题 对于集合 $M$,定义函数 $f_M(x)=\begin{cases}-1,&x\in M\\ 1,&x\not\in M\end{cases}$,对于两个集合 $M,N$,定义集合 $M\Delta N=\{x\mid f_M(x)\cdot f_N(x)=-1\}$.已知 $A=\{2,4,6,8,10\}$,$B=\{1,2,4,8,16\}$. 2022-04-17 20:10:54
26352 592e1e3ceab1df0007bb8c96 高中 解答题 高考真题 对于数列 $A_n:a_1,a_2,\cdots,a_n(a_i\in\mathbb N,i=1,2,\cdots,n)$,定义“$T$ 变换”:$T$ 将数列 $A_n$ 变换成数列 $B_n:b_1,b_2,\cdots,b_n$,其中 $b_i=|a_i-a_{i+1}|(i=1,2,\cdots,n-1)$,且 $b_n=|a_n-a_1|$,这种“$T$ 变换”记作 $B_n=T(A_n)$.继续对数列 $B_n$ 进行“$T$ 变换”,得到数列 $C_n$,$\cdots$,依次类推,当得到的数列各项均为 $0$ 时,变换结束. 2022-04-17 20:09:54
26351 592e1fb0eab1df000ab6eb83 高中 解答题 高考真题 对于数列 $A_n:a_1,a_2,\cdots,a_n(a_i\in\mathbb N,i=1,2,\cdots,n)$,定义“$T$ 变换”:$T$ 将数列 $A_n$ 变换成数列 $B_n:b_1,b_2,\cdots,b_n$,其中 $b_i=|a_i-a_{i+1}|(i=1,2,\cdots,n-1)$,且 $b_n=|a_n-a_1|$,这种“$T$ 变换”记作 $B_n=T(A_n)$.继续对数列 $B_n$ 进行“$T$ 变换”,得到数列 $C_n$,$\cdots$,依次类推,当得到的数列各项均为 $0$ 时,变换结束. 2022-04-17 20:09:54
26350 592e2027eab1df000ab6eb87 高中 解答题 高考真题 已知各项均为非负正数的数列 $A_0:a_0,a_1,\cdots,a_n(n\in\mathbb N^*)$ 满足 $a_0=0,a_1+a_2+\cdots+a_n=n$.若存在最小的正整数 $k$,使得 $a_k=k(k\geqslant1)$,则可定义变换 $T$,变换 $T$ 将数列 $A_0$ 变为数列 $T(A_0):a_0+1,a_1+1,\cdots,a_{k-1}+1,0,a_{k+1},\cdots,a_n$.设 $A_{i+1}=T(A_i),i=0,1,2,\cdots$. 2022-04-17 20:09:54
26349 592e20d1eab1df00095843fd 高中 解答题 高考真题 若对于正整数 $k$,$g(k)$ 表示 $k$ 的最大奇数因数,例如 $g(3)=3,g(10)=5$.设 $S(n)=g(1)+g(2)+g(3)+\cdots+g(2^n)$. 2022-04-17 20:08:54
26348 59656a3caf3c00000736610b 高中 解答题 高考真题 对于函数 $f(x)$,若 $f(x_0)=x_0$,则称 $x_0$ 为 $f(x)$ 的“不动点”;若 $f(f(x_0))=x_0$,则称 $x_0$ 为 $f(x)$ 的“稳定点”.函数 $f(x)$ 的“不动点”和“稳定点”的集合分别记为 $A$ 和 $B$,即 $A=\{x\mid f(x)=x\}$,$B=\{x\mid f(f(x))=x\}$. 2022-04-17 20:08:54
26344 592e25eceab1df0008257294 高中 解答题 高考真题 已知数列 ${A_n}:{a_1},{a_2}, \cdots {a_n}$ $\left( {n \in {\mathbb{N}^*},n \geqslant 2} \right)$ 满足 ${a_1} = {a_n} = 0$,且当 $2 \leqslant k \leqslant n$ $\left( {k \in {\mathbb{N}}^*} \right)$ 时,${\left( {{a_k} - {a_{k - 1}}} \right)^2} = 1$,令 $\displaystyle S\left( {A_n} \right) = \sum\limits_{i = 1}^n {a_i} $. 2022-04-17 20:06:54
26338 592e2c3deab1df0007bb8cc7 高中 解答题 高中习题 若数列 $\{a_n\},(n\in\mathbb N^*)$ 满足:
① $a_n\geqslant0$;
② $a_n-2a_{n+1}+a_{n+2}\geqslant0$;
③ $a_1+a_2+\cdots+a_n\leqslant1$.
则称数列 $\{a_n\}$ 是“和谐”数列.
2022-04-17 20:03:54
26337 592e2c8beab1df000ab6eba9 高中 解答题 高中习题 设 $S_n$ 为数列 $\{a_n\}$ 的前项和($n=1,2,3,\cdots$),按如下方式定义数列 $\{a_n\}:a_1=m(m\in\mathbb N^*)$,对任意 $k\in\mathbb N^*$,$k>1$,设 $\{a_n\}$ 为满足 $0\leqslant a_k\leqslant k-1$ 的整数,且 $k$ 整除 $S_k$. 2022-04-17 20:02:54
26336 592e2d3eeab1df000825729a 高中 解答题 高中习题 设 $n$ 是正整数,对每一个满足 $0\leqslant a_i\leqslant n(i=1,2,\cdots,n)$ 的整数数列 $A=\{a_0,a_1,\cdots,a_n\}$,定义变换 $T$:数列 $T(A)=\{0,T(a_1),T(a_2),\cdots,T(a_n)\}$,其中 $T(a_i)$ 为数列 $A$ 中位于 $a_i$ 之前的与 $a_i$ 不相等的项的个数($i=1,2,\cdots,n$),令 $A_{k+1}=T(A_k)(k=0,1,2,\cdots)$. 2022-04-17 20:02:54
26332 592e2f96eab1df000ab6ebb6 高中 解答题 高中习题 在数列 $\{a_n\}$ 中,$a_1=a,a_{n+1}=\dfrac{5a_n-6}{a_n}$,其中 $n\in\mathbb N^*$. 2022-04-17 20:59:53
26326 592e32a2eab1df00082572aa 高中 解答题 高中习题 已知集合 $P$. 2022-04-17 20:55:53
26325 592e3305eab1df00082572ad 高中 解答题 高中习题 已知 $n$ 为正整数,$S_n=\{(a_1,a_2,\cdots,a_{2^n})\mid a_i\in\{0,1\},1\leqslant i\leqslant 2^n\}$,对 $S_n$ 中任意两个元素 $a=(a_1,a_2,\cdots,a_{2^n})$ 和 $b=(b_1,b_2,\cdots,b_{2^n})$,令 $\displaystyle d(a,b)=\sum\limits_{i=1}^{2^n}{|a_i-b_i|}$.若 $A\subseteq S_n$,满足对 $A$ 中任何两个不同的元素 $a$ 和 $b$,都有 $d(a,b)\geqslant 2^{n-1}$,则称 $A$ 为 $S_n$ 的好子集. 2022-04-17 20:54:53
26057 597ed8f8d05b90000c80594d 高中 解答题 高中习题 某校举行百年校庆的庆典活动,在某项仪式中,要求在操场事先画好的 $2\times n$ 的带型网格中插上小红旗,并且每个 $1\times 1$ 的方格最多插 $1$ 面旗,任何 $2\times 2$ 的“田”字格中不能插满旗.以 $a_n$ 来表示满足条件的不同的插红旗的方法数,例如,$a$ 表示在 $2\times 1$ 的网格中插红旗所有满足要求的方法数,易知 $a_1=4$. 2022-04-17 20:34:51
26054 597ed875d05b90000c805942 高中 解答题 高中习题 证明:$\sqrt{1+2\sqrt{1+3\sqrt{1+4\sqrt{1+\cdots}}}}=3$. 2022-04-17 20:32:51
25982 597ea2f3d05b90000addb38d 高中 解答题 高中习题 有 $n$ 支队伍参加单循环比赛,若某三支队伍 $A,B,C$ 出现 $A$ 击败 $B$,$B$ 击败 $C$,$C$ 击败 $A$,则称三支队伍 $A,B,C$ 构成一个“循环小组”. 2022-04-17 20:55:50
25903 597ed9e9d05b90000b5e3251 高中 解答题 高考真题 设函数 ${f_n}\left( x \right) = - 1 + x + \dfrac{{{x^2}}}{{{2^2}}} + \dfrac{{{x^3}}}{{{3^2}}} + \cdots + \dfrac{{{x^n}}}{{{n^2}}}$($n=1,2,\cdots$),证明: 2022-04-17 20:12:50
0.152125s