序号 |
ID |
年级 |
类型 |
来源 |
摘要 |
创建时间 |
26064 |
597eddf0d05b900009165316 |
高中 |
解答题 |
高中习题 |
设 $\displaystyle a_n=\sum\limits_{k=1}^n\dfrac{1}{k(n+1-k)}$,求证:当 $n\geqslant 2$ 时,$a_{n+1}<a_n$. |
2022-04-17 20:37:51 |
26061 |
597edaf3d05b90000c80595c |
高中 |
解答题 |
高中习题 |
求 $\lim\limits_{n\to\infty}\dfrac{1+\sqrt 2+\sqrt [3]{3}+\cdots+\sqrt [n]{n}}{n}$. |
2022-04-17 20:35:51 |
26060 |
597edab9d05b90000addb480 |
高中 |
解答题 |
高中习题 |
求 $\lim\limits_{n\to\infty}\sqrt[n]{a_1^n+a_2^n+\cdots+a_q^n}$,其中 $a_i>0$,$i=1,2,\cdots,q$. |
2022-04-17 20:35:51 |
26057 |
597ed8f8d05b90000c80594d |
高中 |
解答题 |
高中习题 |
某校举行百年校庆的庆典活动,在某项仪式中,要求在操场事先画好的 $2\times n$ 的带型网格中插上小红旗,并且每个 $1\times 1$ 的方格最多插 $1$ 面旗,任何 $2\times 2$ 的“田”字格中不能插满旗.以 $a_n$ 来表示满足条件的不同的插红旗的方法数,例如,$a$ 表示在 $2\times 1$ 的网格中插红旗所有满足要求的方法数,易知 $a_1=4$. |
2022-04-17 20:34:51 |
26056 |
597ed89ed05b90000c805946 |
高中 |
解答题 |
高中习题 |
设各项均为正数的数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,已知 $2a_2=a_1+a_3$,数列 $\left\{\sqrt{S_n}\right\}$ 是公差为 $d$ 的等差数列. |
2022-04-17 20:33:51 |
26055 |
5985bc215ed01a0008fa5e48 |
高中 |
解答题 |
高中习题 |
设各项均为正数的数列 $\{a_n\}$ 的前 $n$ 项和为 $S_n$,已知 $2a_2=a_1+a_3$,数列 $\left\{\sqrt{S_n}\right\}$ 是公差为 $d$ 的等差数列. |
2022-04-17 20:32:51 |
26053 |
597ed808d05b9000091652eb |
高中 |
解答题 |
高中习题 |
斐波那契(Fibonacci Leonardo)是意大利著名的数学家,他提出了著名的"兔子问题":如果每对兔子每月繁殖一对小兔子,而这对兔子在出生后第二个月长成大兔子,并可以再繁殖一对新的小兔子,在不考虑兔子死亡的前提下,从一对小兔子开始,到第 $n$ 个月共有多少对兔子. |
2022-04-17 20:31:51 |
26052 |
597ed72fd05b90000addb468 |
高中 |
解答题 |
高中习题 |
各项均为正数的数列 $\{a_n\}$ 对满足 $m+n=p+q$ 的正整数 $m,n,p,q$ 都有$$\dfrac{a_m+a_n}{(1+a_m)(1+a_n)}=\dfrac{a_p+a_q}{(1+a_p)(1+a_q)}.$$ |
2022-04-17 20:31:51 |
26051 |
597ed5b9d05b90000c805937 |
高中 |
解答题 |
高中习题 |
若 $a_1=2$,$a_{n+1}=3a_n-2$,$n\in\mathbb{N}^*$,求 $a_n$. |
2022-04-17 20:30:51 |
26021 |
597ec55dd05b90000c8058c9 |
高中 |
解答题 |
高中习题 |
数列 $\left\{ {{a_n}} \right\}$ 满足 ${a_{n+1}}=\dfrac{{{a_n}}}{2}+\dfrac{1}{{{a_n}}}$. |
2022-04-17 20:14:51 |
26020 |
597ec51fd05b90000c8058c4 |
高中 |
解答题 |
高中习题 |
设函数 $f\left( x \right)=x-x\ln x$.数列 $\left\{ {{a_n}} \right\}$ 满足:$0<{a_1}<1$,${a_{n+1}}=f\left( {{a_n}} \right)$.设 $b \in \left( {{a_1} , 1} \right)$,整数 $k \geqslant \dfrac{{{a_1}-b}}{{{a_1}\ln b}}$.证明:${a_{k+1}}>b$. |
2022-04-17 20:14:51 |
26019 |
5985d1db5ed01a000ba75b2f |
高中 |
解答题 |
高中习题 |
已知 ${a_1}={\rm{e}}$,${a_{n+1}}={a_n}-\ln {a_n}$. |
2022-04-17 20:14:51 |
26018 |
5985d1d95ed01a000ba75b2c |
高中 |
解答题 |
高中习题 |
已知 ${a_1}={\rm{e}}$,${a_{n+1}}={a_n}-\ln {a_n}$. |
2022-04-17 20:13:51 |
26017 |
5985d1d85ed01a000984942d |
高中 |
解答题 |
高中习题 |
已知 ${a_1}={\rm{e}}$,${a_{n+1}}={a_n}-\ln {a_n}$. |
2022-04-17 20:13:51 |
26016 |
5985d1d55ed01a000ad7988d |
高中 |
解答题 |
高中习题 |
已知 ${a_1}={\rm{e}}$,${a_{n+1}}={a_n}-\ln {a_n}$. |
2022-04-17 20:12:51 |
26015 |
5985d6c15ed01a0009849433 |
高中 |
解答题 |
高中习题 |
已知数列 $\left\{a_n\right\}$ 满足 $a_1=a+2$($a\geqslant 2$),$a_{n+1}=\sqrt{\dfrac{a_n+a}{2}}$($n\in\mathbb N^*$). |
2022-04-17 20:12:51 |
26014 |
597ec1fed05b90000addb3df |
高中 |
解答题 |
高中习题 |
已知数列 $\left\{a_n\right\}$ 满足 $a_1=a+2$($a\geqslant 2$),$a_{n+1}=\sqrt{\dfrac{a_n+a}{2}}$($n\in\mathbb N^*$). |
2022-04-17 20:11:51 |
26013 |
597ec198d05b90000addb3d9 |
高中 |
解答题 |
高中习题 |
已知数列 $\left\{ {{a_n}} \right\}$ 满足 ${a_1}=a$($0<a<1$),${a_{n+1}}={a^{{a_n}}}$,试比较 ${a_{20}} , {a_{25}} , {a_{30}}$ 三者的大小. |
2022-04-17 20:11:51 |
26012 |
597ec158d05b90000addb3d5 |
高中 |
解答题 |
高中习题 |
设 ${x_1}>0$,${x_{n+1}}=\dfrac{{3\left( {1+{x_n}} \right)}}{{3+{x_n}}}$,$n=1 , 2 , 3 , \cdots $,判断数列 $\{x_n\}$ 的单调性. |
2022-04-17 20:11:51 |
26008 |
597ea343d05b90000addb392 |
高中 |
解答题 |
高中习题 |
设等差数列首项和公差均为非负整数,且各项之和为 $97^2$,这样的等差数列共有多少个? |
2022-04-17 20:09:51 |