设函数 $f\left( x \right)=x-x\ln x$.数列 $\left\{ {{a_n}} \right\}$ 满足:$0<{a_1}<1$,${a_{n+1}}=f\left( {{a_n}} \right)$.设 $b \in \left( {{a_1} , 1} \right)$,整数 $k \geqslant \dfrac{{{a_1}-b}}{{{a_1}\ln b}}$.证明:${a_{k+1}}>b$.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
由不动点法容易分析出数列 $\left\{ {{a_n}} \right\}$ 单调递增,极限为 $1$.
由于 ${a_1}<b<1$,于是存在正整数 $N$,使得 ${a_N} \leqslant b<{a_{N+1}}$,题意即需要我们去证明 $N \leqslant k$.
由$${a_{n+1}}={a_n}-{a_n}\ln {a_n}$$得$${a_{n+1}}-{a_n}=- {a_n}\ln {a_n}.$$于是\[\begin{split}
{a_{k+1}}&={a_1}+\sum\limits_{m=1}^k {\left( {{a_{m+1}}-{a_m}} \right)}= {a_1}+\sum\limits_{m=1}^k {\left( {-{a_m}\ln {a_m}} \right)} \\
&> {a_1}+\sum\limits_{m=1}^k {\left( {-{a_1}\ln b} \right)} = {a_1}+k\left( {-{a_1}\ln b} \right)\\
& \geqslant {a_1}+\dfrac{{b-{a_1}}}{{-{a_1}\ln b}} \cdot \left( {-{a_1}\ln b} \right)=b.\end{split}\]
由于 ${a_1}<b<1$,于是存在正整数 $N$,使得 ${a_N} \leqslant b<{a_{N+1}}$,题意即需要我们去证明 $N \leqslant k$.
由$${a_{n+1}}={a_n}-{a_n}\ln {a_n}$$得$${a_{n+1}}-{a_n}=- {a_n}\ln {a_n}.$$于是\[\begin{split}
{a_{k+1}}&={a_1}+\sum\limits_{m=1}^k {\left( {{a_{m+1}}-{a_m}} \right)}= {a_1}+\sum\limits_{m=1}^k {\left( {-{a_m}\ln {a_m}} \right)} \\
&> {a_1}+\sum\limits_{m=1}^k {\left( {-{a_1}\ln b} \right)} = {a_1}+k\left( {-{a_1}\ln b} \right)\\
& \geqslant {a_1}+\dfrac{{b-{a_1}}}{{-{a_1}\ln b}} \cdot \left( {-{a_1}\ln b} \right)=b.\end{split}\]
答案
解析
备注