在 $\triangle ABC$ 中,$AB=c$,$DC=kAD$,$\angle DBA=\alpha$,$\angle DBC=\beta$,则 $BC=$ .

【难度】
【出处】
无
【标注】
【答案】
$\dfrac {kc\sin\alpha}{\sin\beta}$
【解析】
根据题意,有\[\overrightarrow{BD}=\dfrac{k}{k+1}\overrightarrow {BA}+\dfrac 1{k+1}\overrightarrow {BC},\]两边分别与 $\overrightarrow{BA}$ 和 $\overrightarrow{BC}$ 作数量积,可得\[\begin{split}
BD\cdot BA\cdot \cos\alpha =& \dfrac k{k+1}\cdot BA^2+\dfrac 1{k+1}\cdot BC\cdot BA\cdot\cos(\alpha+\beta),\\
BD\cdot BC\cdot \cos\beta =& \dfrac{k}{k+1}\cdot BA\cdot BC\cdot\cos(\alpha+\beta)+\dfrac 1{k+1}\cdot BC^2
,\end{split}\]于是\[\begin{aligned} BD\cos\alpha&=\dfrac{kc}{k+1}+\dfrac 1{k+1}BC\cos(\alpha+\beta),\\
BD\cos\beta &=\dfrac{kc}{k+1}\cos(\alpha+\beta)+\dfrac 1{k+1}BC,\end{aligned}\]因此解得\[BC=kc\cdot \dfrac{\cos\alpha\cos(\alpha+\beta)-\cos\beta}{\cos\beta\cos(\alpha+\beta)-\cos\alpha}.\]
BD\cdot BA\cdot \cos\alpha =& \dfrac k{k+1}\cdot BA^2+\dfrac 1{k+1}\cdot BC\cdot BA\cdot\cos(\alpha+\beta),\\
BD\cdot BC\cdot \cos\beta =& \dfrac{k}{k+1}\cdot BA\cdot BC\cdot\cos(\alpha+\beta)+\dfrac 1{k+1}\cdot BC^2
,\end{split}\]于是\[\begin{aligned} BD\cos\alpha&=\dfrac{kc}{k+1}+\dfrac 1{k+1}BC\cos(\alpha+\beta),\\
BD\cos\beta &=\dfrac{kc}{k+1}\cos(\alpha+\beta)+\dfrac 1{k+1}BC,\end{aligned}\]因此解得\[BC=kc\cdot \dfrac{\cos\alpha\cos(\alpha+\beta)-\cos\beta}{\cos\beta\cos(\alpha+\beta)-\cos\alpha}.\]
题目
答案
解析
备注