化简求值:$\left(1+\cos\dfrac{\pi}5\right)\left(1+\cos\dfrac{3\pi}{5}\right)=$ 
【难度】
【出处】
【标注】
【答案】
$\dfrac54$
【解析】
记所求表达式为 $M$,则$$\begin{split} M&=1+\cos\dfrac{\pi}5+\cos\dfrac{3\pi}{5}+\cos\dfrac{\pi}{5}\cos\dfrac{3\pi}{5}\\
&=1+2\cos\dfrac{\pi}{5}\cos\dfrac{3\pi}{5}-\cos\dfrac{\pi}{5}\cos\dfrac{3\pi}{5}\\
&=1+\dfrac1{\sin\frac{\pi}5}\cdot\sin\dfrac{\pi}{5}\cos\dfrac{\pi}{5}\cos\dfrac{3\pi}{5}\\
&=1+\dfrac14\\
&=\dfrac54.\end{split}$$
题目 答案 解析 备注
0.155648s