设 $n$ 为正整数,$x=\left(1+\dfrac 1n\right)^n$,$y=\left(1+\dfrac 1n\right)^{n+1}$,则 \((\qquad)\)
A: $x^y>y^x$
B: $x^y=y^x$
C: $x^y<y^x$
D: 以上都有可能
【难度】
【出处】
2011年全国高中数学联赛天津市预赛
【标注】
  • 数学竞赛
    >
    函数与方程
    >
    特殊函数
  • 知识点
    >
    函数
    >
    常见初等函数
    >
    对数函数
    >
    对数及其运算
【答案】
B
【解析】
根据题意,有\[y\ln x=\left(1+\dfrac 1n\right)^{n+1}\cdot n\ln \left(1+\dfrac 1n\right)=\left(1+\dfrac{1}n\right)^n\cdot ( n+1)\ln\left(1+\dfrac 1n\right)=x\ln y.\]
题目 答案 解析 备注
0.107686s