已知点的序列 $A_n(x_n,0)$($n\in \mathbb N^{\ast}$),$x_1=0$,$x_2=\dfrac 12$.$A_3$ 是线段 $A_1A_2$ 的中点,$A_4$ 是线段 $A_2A_3$ 的中点,$\cdots $,$A_n$ 是线段 $A_{n-2}A_{n-1}$ 的中点,设 $a_n=x_{n+1}-x_n$,则 $\{a_n\}$ 的通项公式是 \((\qquad)\)
【难度】
【出处】
2011年第二十二届“希望杯”全国数学邀请赛高一(二试)
【标注】
【答案】
D
【解析】
根据题意可知 $\{a_n\}$ 是以 $\dfrac 12$ 为首项,$-\dfrac 12$ 为公比的等比数列,故$$a_n=-\left(-\dfrac 12\right)^{n}.$$
题目
答案
解析
备注