正项数列 $\{a_{n}\}$ 满足 $\dfrac{1}{a_{n}a_{n+1}}+\dfrac{1}{a_{n}a_{n+2}}+\dfrac{1}{a_{n+1}a_{n+2}}=1,n\in\mathbb N^{*}$,$a_{1}+a_{3}=6$,$a_{1},a_{2},a_{3}$ 单调递增且成等比数列,$S_{n}$ 为 $\{a_{n}\}$ 的前 $n$ 项和,则 $[S_{2008}]$ 的值是($[x]$ 表示不超过实数 $x$ 的最大整数) \((\qquad)\)
A: $5352$
B: $5353$
C: $5357$
D: $5358$
【难度】
【出处】
【标注】
【答案】
A
【解析】
由已知有\[a_{n}+a_{n+1}+a_{n+2}=a_{n}a_{n+1}a_{n+2},\cdots\cdots\text{ ① }\]所以\[a_{1}+a_{2}+a_{3}=a_{1}a_{2}a_{3},\]而 $a_{1}a_{3}=a_{2}^{2}$,因此$$a_{2}^{3}=a_{2}+6,$$可知\[(a_{2}-2)(a_{2}^{2}+2a_{2}+3)=0,\]解得 $a_{2}=2$.
又因为 $a_{1},a_{2},a_{3}$ 成等比数列,所以$$a_{1}+\dfrac{4}{a_{1}}=6,$$解得 $a_{1}=3\pm \sqrt 5$.
由 $a_{1},a_{2},a_{3}$ 单调递增知 $a_{1}=3-\sqrt 5$.
由 ① 式得\[a_{n+1}+a_{n+2}+a_{n+3}=a_{n+1}a_{n+2}a_{n+3},\cdots\cdots \text{ ② }\]② $-$ ① 得\[(a_{n+3}-a_{n})(1-a_{n+1}a_{n+2})=0,\]因此 $a_{n}=a_{n+3}$,故 $\{a_{n}\}$ 是以 $3$ 为周期的数列,可知$$a_{2008}=a_{1}=3-\sqrt 5,$$因此\[\begin{split}S_{2008}&=S_{2007}+a_{2008}\\&= \dfrac{2007}{3}\cdot (6+2)+(3-\sqrt 5)\\&=5352+(3-\sqrt 5),\end{split}\]故 $[S_{2008}]=5352$.
题目 答案 解析 备注
0.110850s