给出下列命题:
① $\begin{split}\lim \limits_{x \to 1} \dfrac{{{x^2} - x}}{x - 1} = 1\end{split}$;
② $\begin{split}\lim \limits_{x \to 0} \dfrac{x}{|x|} = 1\end{split}$;
③ 当 $a>1$ 时,$\begin{split}\lim \limits_{n \to +\infty } \dfrac{{{a^{n - 1}}}}{{1 + {a^n}}} = \dfrac{1}{a}\end{split}$;
④ 已知 $\begin{split}\lim \limits_{n \to \infty } {\left( {1 + \dfrac{1}{n}} \right)^n} = {\mathrm{e}}\end{split}$,则 $\begin{split}\lim \limits_{n \to \infty } {\left( {1 + \dfrac{1}{2n}} \right)^n} = \dfrac{1}{2}{\mathrm{e}}\end{split}$.
其中是正确命题的有 \((\qquad)\)
① $\begin{split}\lim \limits_{x \to 1} \dfrac{{{x^2} - x}}{x - 1} = 1\end{split}$;
② $\begin{split}\lim \limits_{x \to 0} \dfrac{x}{|x|} = 1\end{split}$;
③ 当 $a>1$ 时,$\begin{split}\lim \limits_{n \to +\infty } \dfrac{{{a^{n - 1}}}}{{1 + {a^n}}} = \dfrac{1}{a}\end{split}$;
④ 已知 $\begin{split}\lim \limits_{n \to \infty } {\left( {1 + \dfrac{1}{n}} \right)^n} = {\mathrm{e}}\end{split}$,则 $\begin{split}\lim \limits_{n \to \infty } {\left( {1 + \dfrac{1}{2n}} \right)^n} = \dfrac{1}{2}{\mathrm{e}}\end{split}$.
其中是正确命题的有 \((\qquad)\)
【难度】
【出处】
无
【标注】
【答案】
AC
【解析】
略
题目
答案
解析
备注