函数 $y=\sqrt{x^2+4}+\dfrac{1}{\sqrt{x^2+4}}$ 的最小值是 \((\qquad)\)
【难度】
【出处】
2016年第二十七届“希望杯”全国数学邀请赛高二(二试)
【标注】
【答案】
B
【解析】
令 $\sqrt{x^2+4}=t$,则 $t\geqslant2$,则题中函数即$$y=t+\dfrac1t,$$根据对勾函数的性质,当 $t=2$ 时,取最小值为 $\dfrac52$.
题目
答案
解析
备注