对任意复数 ${w_1},{w_2}$,定义 ${w_1} * {w_2} = {w_1}\overline {w_2} $,其中 $\overline {w_2} $ 是 ${w_2}$ 的共轭复数,对任意复数 ${z_1},{z_2},{z_3}$ 有如下四个命题:
① $\left( {{z_1} + {z_2}} \right) * {z_3} = \left({z_1} * {z_3}\right) + \left({z_2} * {z_3}\right)$;
② ${z_1} * \left({z_2} + {z_3}\right) = \left({z_1} * {z_2}\right) + \left({z_1} * {z_3}\right)$;
③ $\left( {{z_1} * {z_2}} \right) * {z_3} = {z_1} * \left({z_2} * {z_3}\right)$;
④ ${z_1} * {z_2} = {z_2} * {z_1}$;
则真命题的个数是 \((\qquad)\)
① $\left( {{z_1} + {z_2}} \right) * {z_3} = \left({z_1} * {z_3}\right) + \left({z_2} * {z_3}\right)$;
② ${z_1} * \left({z_2} + {z_3}\right) = \left({z_1} * {z_2}\right) + \left({z_1} * {z_3}\right)$;
③ $\left( {{z_1} * {z_2}} \right) * {z_3} = {z_1} * \left({z_2} * {z_3}\right)$;
④ ${z_1} * {z_2} = {z_2} * {z_1}$;
则真命题的个数是 \((\qquad)\)
【难度】
【出处】
无
【标注】
【答案】
B
【解析】
新定义运算,在复数的基础上考查对新定义的运算的理解.这类新定义的题严格按照定义来计算.由题意并结合复数的四则运算法则及共轭复数的运算性质可得\[\begin{split}\left(z_1+z_2\right)*z_3&=\left(z_1+z_2\right)\overline{z_3}\\&=z_1\overline{z_3}+z_2\overline{z_3}\\&=z_1*z_3+z_2*z_3.\end{split}\]故 ① 是真命题.\[\begin{split}z_1*\left(z_2+z_3\right)&=z_1\overline{z_2+z_3}\\&=z_1\left(\overline{z_2}+\overline {z_3}\right)\\&=\left(z_1*z_2\right)+\left(z_1*z_2\right).\end{split}\]故 ② 真命题.
$\left(z_1*z_2\right)*z_2=z_1\overline {z_2}\overline {z_3}$,而 $z_1*\left(z_2*z_3\right)=z_1\overline{z_2*z_3}=z_1\overline{z_2\overline{z_3}}$,故 ③ 是假命题.
$z_1*z_2=z_1\overline{z_2}$,而 $z_2*z_1=z_2\overline{z_1}$,故 ④ 是假命题.
$\left(z_1*z_2\right)*z_2=z_1\overline {z_2}\overline {z_3}$,而 $z_1*\left(z_2*z_3\right)=z_1\overline{z_2*z_3}=z_1\overline{z_2\overline{z_3}}$,故 ③ 是假命题.
$z_1*z_2=z_1\overline{z_2}$,而 $z_2*z_1=z_2\overline{z_1}$,故 ④ 是假命题.
题目
答案
解析
备注