在圆锥中,$M$ 是顶点,$O$ 是底面中心,$A$ 在底面圆周上,$B$ 在底面圆内,$|MA|=6$,$AB\perp OB$,$OH\perp MB$ 于 $H$,$C$ 为 $MA$ 的中点,当四面体 $O-CHM$ 的体积最大时,$|BH|=$ \((\qquad)\)
【难度】
【出处】
2017年北京大学优特(U-Test)数学测试试题
【标注】
【答案】
D
【解析】
如图.设 $OM=x$,$OB=y$,$AB=z$,则\[x^2+y^2+z^2=36.\]
此时\[\begin{split} O-CHM&=\dfrac{MH}{MB}\cdot \dfrac{MC}{MA}\cdot O-MAB\\
&=\dfrac{x^2}{x^2+y^2}\cdot \dfrac 12\cdot \dfrac 16xyz\\
&=\dfrac{1}{12}\cdot \dfrac{x^3yz}{x^2+y^2}\\
&=\dfrac{1}{12}\cdot \sqrt{\dfrac{x^6\left(36-x^2-z^2
\right)z^2}{\left(36-z^2\right)^2}}\\
&=\dfrac{1}{12}\cdot \sqrt{\dfrac{x^2\cdot x^2\cdot x^2\cdot \left(108-3x^2-3z^2\right)\cdot z^2}{3\left(36-z^2\right)^2}}\\
&\leqslant \dfrac{1}{12}\cdot \sqrt{\dfrac{\left(\dfrac{108-3z^2}{4}\right)^4\cdot z^2}{3\left(36-z^2\right)^2}}\\
&=\dfrac{1}{12}\cdot \sqrt{\dfrac{27}{512}\cdot \left(36-z^2\right)\cdot \left(36-z^2\right)\cdot 2z^2}\\
&\leqslant \dfrac{1}{12}\cdot \sqrt{\dfrac{27}{512}\cdot 24^3}\\
&=\dfrac 94,\end{split}\]等号当\[\begin{cases} x^2=108-3x^2-3z^2,\\ 36-z^2=2z^2,\\ x^2+y^2+z^2=36,\end{cases}\]即\[\begin{cases} x^2=18,\\ y^2=6,\\ z^2=12,\end{cases}\]时取得.此时容易算得 $BH=\dfrac{\sqrt 6}2$.

&=\dfrac{x^2}{x^2+y^2}\cdot \dfrac 12\cdot \dfrac 16xyz\\
&=\dfrac{1}{12}\cdot \dfrac{x^3yz}{x^2+y^2}\\
&=\dfrac{1}{12}\cdot \sqrt{\dfrac{x^6\left(36-x^2-z^2
\right)z^2}{\left(36-z^2\right)^2}}\\
&=\dfrac{1}{12}\cdot \sqrt{\dfrac{x^2\cdot x^2\cdot x^2\cdot \left(108-3x^2-3z^2\right)\cdot z^2}{3\left(36-z^2\right)^2}}\\
&\leqslant \dfrac{1}{12}\cdot \sqrt{\dfrac{\left(\dfrac{108-3z^2}{4}\right)^4\cdot z^2}{3\left(36-z^2\right)^2}}\\
&=\dfrac{1}{12}\cdot \sqrt{\dfrac{27}{512}\cdot \left(36-z^2\right)\cdot \left(36-z^2\right)\cdot 2z^2}\\
&\leqslant \dfrac{1}{12}\cdot \sqrt{\dfrac{27}{512}\cdot 24^3}\\
&=\dfrac 94,\end{split}\]等号当\[\begin{cases} x^2=108-3x^2-3z^2,\\ 36-z^2=2z^2,\\ x^2+y^2+z^2=36,\end{cases}\]即\[\begin{cases} x^2=18,\\ y^2=6,\\ z^2=12,\end{cases}\]时取得.此时容易算得 $BH=\dfrac{\sqrt 6}2$.
题目
答案
解析
备注