求证:$\dfrac{\cos\alpha}{1+\sin \alpha}-\dfrac{\sin \alpha}{1+\cos\alpha}=\dfrac{2(\cos\alpha-\sin\alpha)}{1+\sin\alpha+\cos\alpha}$.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
由于$$\dfrac{\cos\alpha}{1+\sin\alpha}=\dfrac{1-\sin\alpha}{\cos\alpha}=\dfrac{\cos\alpha+1-\sin\alpha}{1+\sin\alpha+\cos\alpha},$$类似的,亦有$$\dfrac{\sin\alpha}{1+\cos\alpha}=\dfrac{1-\cos\alpha}{\sin\alpha}=\dfrac{\sin\alpha+1-\cos\alpha}{1+\cos\alpha+\sin\alpha},$$两式相减即得欲证不等式.
答案
解析
备注