已知 $\left\{ {a_n} \right\}$ 是递增数列,其前 $n$ 项和为 ${S_n}$,${a_1} > 1$,且 $10{S_n} = \left( {2{a_n} + 1} \right)\left( {{a_n} + 2} \right)$,$ n \in {{\mathbb{N}}^ * }$.
【难度】
【出处】
【标注】
  1. 求数列 $\left\{ {a_n} \right\}$ 的通项 ${a_n}$;
    标注
    答案
    ${a_n} = 2 + \dfrac{5}{2}\left(n - 1\right) = \dfrac{1}{2}\left(5n - 1\right)$
    解析
    当 $n=1$ 时,\[10{a_1} = \left(2{a_1} + 1\right)\left({a_1} + 2\right) ,\]得\[2{a_1}^2 - 5{a_1} + 2 = 0 ,\]解得 ${a_1} = 2$ 或 ${a_1} = \dfrac{1}{2}$.由于 ${a_1} > 1$,所以 ${a_1} = 2$.
    因为\[10{S_n} = \left(2{a_n} + 1\right)\left({a_n} + 2\right),\]所以\[10{S_n} = 2{a_n}^2 + 5{a_n} + 2 \]故\[10{a_{n + 1}} = 10{S_{n + 1}} - 10{S_n} = 2{a_{n + 1}}^2 + 5{a_{n + 1}} + 2 - 2{a_n}^2 - 5{a_n} - 2 ,\]整理得\[2\left({a_{n + 1}}^2 - {a_n}^2\right) - 5\left({a_{n + 1}} + {a_n}\right) = 0,\]即\[\left({a_{n + 1}} + {a_n}\right)\left[2\left({a_{n + 1}} - {a_n}\right) - 5\right] = 0 .\]因为 $\left\{ {a_n} \right\}$ 是递增数列,且 ${a_1} = 2$,故 ${a_{n + 1}} + {a_n} \ne 0$,因此 ${a_{n + 1}} - {a_n} = \dfrac{5}{2}$.
    则数列 $\left\{ {a_n} \right\}$ 是以 $ 2 $ 为首项,$\dfrac{5}{2}$ 为公差的等差数列.
    所以 ${a_n} = 2 + \dfrac{5}{2}\left(n - 1\right) = \dfrac{1}{2}\left(5n - 1\right)$.
  2. 是否存在 $m $,$ n $,$k \in {{\mathbb{N}}^ * }$,使得 $2\left( {{a_m} + {a_n}} \right) = {a_k}$ 成立?若存在,写出一组符合条件的 $m $,$ n $,$k $ 的值;若不存在,请说明理由;
    标注
    答案
    解析
    满足条件的正整数 $m$,$ n $,$k$ 不存在,证明如下:
    假设存在 $m$,$ n $,$k \in {{\mathbb{N}}^ * }$,使得 $2\left( {{a_m} + {a_n}} \right) = {a_k}$.
    则\[5m - 1 + 5n - 1 = \dfrac{1}{2}\left( {5k - 1} \right) .\]整理得 $2m + 2n - k = \dfrac{3}{5}$,矛盾.
    故满足条件的正整数 $m$,$ n $,$k$ 不存在.
  3. 设 ${b_n} = {a_n} - \dfrac{n - 3}{2} $,${c_n} = \dfrac{{2\left( {n + 3} \right){a_n}}}{5n - 1}$,若对于任意的 $n \in {{\mathbb{N}}^ * }$,不等式$$\dfrac{\sqrt 5 m}{{31\left( {1 + \dfrac{1}{b_1}} \right)\left( {1 + \dfrac{1}{b_2}} \right)\cdots \left( {1 + \dfrac{1}{b_n}} \right)}} - \dfrac{1}{{\sqrt {{c_{n + 1}} + n - 1} }} \leqslant 0$$恒成立,求正整数 $m$ 的最大值.
    标注
    答案
    $m$ 的最大值为 $8$
    解析
    \[ \begin{split} {b_n} &= {a_n} - \dfrac{n - 3}{2} = \dfrac{1}{2}\left({5n - 1} \right)- \dfrac{n - 3}{2} = 2n + 1,\\
    {c_n}& = \dfrac{{2\left({n + 3} \right){a_n}}}{5n - 1} = \dfrac{{2\left({n + 3} \right)}}{5n - 1} \cdot \dfrac{5n - 1}{2} = n + 3.\end{split} \]不等式\[\dfrac{\sqrt 5 m}{{31\left( {1 + \dfrac{1}{b_1}} \right)\left( {1 + \dfrac{1}{b_2}} \right)\cdots \left( {1 + \dfrac{1}{b_n}} \right)}} - \dfrac{1}{{\sqrt {{c_{n + 1}} + n - 1} }} \leqslant 0,\]可转化为\[ \begin{split} \dfrac{\sqrt 5 m}{31} & \leqslant \dfrac{{\left({1 + \dfrac{1}{b_1}} \right)\left({1 + \dfrac{1}{b_2}} \right)\cdots \left({1 + \dfrac{1}{b_n}} \right)}}{{\sqrt {{c_{n + 1}} + n - 1} }}\\
    &= \dfrac{{{b_1} + 1}}{b_1} \cdot \dfrac{{{b_2} + 1}}{b_2} \cdot \dfrac{{{b_3} + 1}}{b_3} \cdot \cdots \dfrac{{{b_n} + 1}}{b_n} \cdot \dfrac{1}{{\sqrt {{c_{n + 1}} + n - 1} }} \\
    &= \dfrac{4}{3} \cdot \dfrac{6}{5} \cdot \dfrac{8}{7} \cdot \cdots \cdot \dfrac{2n + 2}{2n + 1} \cdot \dfrac{1}{{\sqrt {2n + 3} }},
    \end{split} \]设 $p_{n} = \dfrac{4}{3} \cdot \dfrac{6}{5} \cdot \dfrac{8}{7} \cdot \cdots \cdot \dfrac{2n + 2}{2n + 1} \cdot \dfrac{1}{{\sqrt {2n + 3} }}$,则\[\dfrac{p_{n+1}}{p_{n}} = \dfrac{2n + 4}{2n + 3} \cdot \dfrac{{\sqrt {2n + 3} }}{{\sqrt {2n + 5} }} = \dfrac{2n+4}{\sqrt{2n+3}\cdot \sqrt{2n+5}}=\sqrt{\dfrac{4n^{2}+16n+16}{4n^{2}+16n+15}}>1.\]所以 $\dfrac{\sqrt 5m}{31}\leqslant \min(p_{n})=p_{1}=\dfrac{4}{3\sqrt 5}$,解得 $m\leqslant \dfrac{124}{15}$.因此正整数 $m$ 的最大值为 $8$.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2 问题3 答案3 解析3 备注3
0.106772s