已知 ${x_1}{x_2} \cdots {x_n} = 1$,${x_i} > 0$,$i = 1,2, \cdots ,n$,求证:\[\left( {\sqrt 2 + {x_1}} \right)\left( {\sqrt 2 + {x_2}} \right) \cdots \left( {\sqrt 2 + {x_n}} \right) \geqslant {\left( {\sqrt 2 + 1} \right)^n}.\]
【难度】
【出处】
2014年北京大学等三校联考自主招生试题
【标注】
【答案】
略
【解析】
当 $n = 1$ 时,不等式显然成立.
假设命题对正整数 $n$ 均成立,则命题对 $n + 1$:
不妨设 ${x_1} \geqslant 1$,${x_2} \leqslant 1$,而\[\left( {{x_1}{x_2}} \right){x_3} \cdots {x_n}{x_{n + 1}} = 1,\]于是\[\left( {\sqrt 2 + {x_1}{x_2}} \right)\left( {\sqrt 2 + {x_3}} \right) \cdots \left( {\sqrt 2 + {x_{n + 1}}} \right) \geqslant {\left( {\sqrt 2 + 1} \right)^n}.\]因此只需要证明\[\dfrac{{\left( {\sqrt 2 + {x_1}} \right)\left( {\sqrt 2 + {x_2}} \right)}}{{\sqrt 2 + {x_1}{x_2}}} \geqslant \sqrt 2 + 1.\]用分析法:
该不等式成立\[\begin{split}
& \Leftarrow \left( {\sqrt 2 + {x_1}} \right)\left( {\sqrt 2 + {x_2}} \right) \geqslant \left( {\sqrt 2 + {x_1}{x_2}} \right)\left( {\sqrt 2 + 1} \right)\\
& \Leftarrow 2 + \sqrt 2 \left( {{x_1} + {x_2}} \right) + {x_1}{x_2} \geqslant 2 + \sqrt 2 {x_1}{x_2} + {x_1}{x_2} + \sqrt 2 \\
& \Leftarrow {x_1} + {x_2} \geqslant {x_1}{x_2} + 1 \\
& \Leftarrow \left( {1 - {x_1}} \right)\left( {1 - {x_2}} \right) \leqslant 0 \\ \end{split}\]
假设命题对正整数 $n$ 均成立,则命题对 $n + 1$:
不妨设 ${x_1} \geqslant 1$,${x_2} \leqslant 1$,而\[\left( {{x_1}{x_2}} \right){x_3} \cdots {x_n}{x_{n + 1}} = 1,\]于是\[\left( {\sqrt 2 + {x_1}{x_2}} \right)\left( {\sqrt 2 + {x_3}} \right) \cdots \left( {\sqrt 2 + {x_{n + 1}}} \right) \geqslant {\left( {\sqrt 2 + 1} \right)^n}.\]因此只需要证明\[\dfrac{{\left( {\sqrt 2 + {x_1}} \right)\left( {\sqrt 2 + {x_2}} \right)}}{{\sqrt 2 + {x_1}{x_2}}} \geqslant \sqrt 2 + 1.\]用分析法:
该不等式成立\[\begin{split}
& \Leftarrow \left( {\sqrt 2 + {x_1}} \right)\left( {\sqrt 2 + {x_2}} \right) \geqslant \left( {\sqrt 2 + {x_1}{x_2}} \right)\left( {\sqrt 2 + 1} \right)\\
& \Leftarrow 2 + \sqrt 2 \left( {{x_1} + {x_2}} \right) + {x_1}{x_2} \geqslant 2 + \sqrt 2 {x_1}{x_2} + {x_1}{x_2} + \sqrt 2 \\
& \Leftarrow {x_1} + {x_2} \geqslant {x_1}{x_2} + 1 \\
& \Leftarrow \left( {1 - {x_1}} \right)\left( {1 - {x_2}} \right) \leqslant 0 \\ \end{split}\]
答案
解析
备注