已知 $f(x)$ 是 $\mathbb R$ 上的奇函数,$f(1)=1$,且对任意 $x<0$,均有 $f\left(\dfrac x{x-1}\right)=xf(x)$.求\[f(1)f \left(\dfrac 1{100} \right )+f \left(\dfrac12 \right)f \left(\dfrac 1{99} \right)+f \left(\dfrac 13 \right )f \left(\dfrac 1{98} \right )+\cdots+f \left(\dfrac 1{50} \right)f \left(\dfrac 1{51} \right)\]的值.
【难度】
【出处】
2016年全国高中数学联赛(一试)
【标注】
  • 方法
    >
    思考方式
    >
    递推与递归
  • 题型
    >
    代数变形
    >
    代数式求值
  • 知识点
    >
    计数与概率
    >
    计数中的常用知识
    >
    二项式定理
  • 知识点
    >
    数列
    >
    数列的通项公式
    >
    求数列通项的累加(乘)法
【答案】
$\dfrac{2^{98}}{99!}$
【解析】
令 $x=-\dfrac 1n$,$n\in\mathbb N^*$,则$$\dfrac{x}{x-1}=\dfrac{-\dfrac 1n}{-\dfrac 1n-1}=\dfrac{1}{n+1},$$于是有$$f\left(\dfrac{1}{n+1}\right)=-\dfrac 1nf\left(-\dfrac 1n\right)=\dfrac 1n f\left(\dfrac 1n\right),$$记 $a_n=f\left(\dfrac 1n\right)$,$n\in\mathbb N^*$,则有 $\dfrac{a_{n+1}}{a_n}=\dfrac 1n$,从而$$a_n=\dfrac{1}{(n-1)!}.$$于是所求代数式即$$\sum_{i=1}^{50}a_ia_{101-i}=\sum_{i=1}^{50}\dfrac{1}{(i-1)!\cdot (100-i)!}
=\dfrac{1}{99!}\sum_{i=0}^{49}{\rm C}_{99}^i
=\dfrac{1}{99!}\cdot \dfrac 12\sum_{i=0}^{99}{\rm C}_{99}^i
=\dfrac{2^{98}}{99!}.$$
答案 解析 备注
0.108514s