给定正实数 $x_1,y_1,z_1$,定义数列 $\{x_n\},\{y_n\},\{z_n\}$ 如下:$$x_{n+1}=y_n+\dfrac 1{z_n},y_{n+1}=z_n+\dfrac{1}{x_n},z_{n+1}=x_n+\dfrac 1{y_n},$$求证:$x_{200},y_{200},z_{200}$ 中至少有一个数大于 $20$.
【难度】
【出处】
【标注】
  • 知识点
    >
    不等式
    >
    常用不等式
    >
    柯西不等式
  • 知识点
    >
    数列
    >
    数列的性质
    >
    数列的有界性
  • 方法
    >
    思考方式
    >
    递推与递归
【答案】
【解析】
将三式相加,有$$x_{n+1}+y_{n+1}+z_{n+1}=\left(x_n+y_n+z_n\right)+\left(\dfrac 1{x_n}+\dfrac 1{y_n}+\dfrac 1{z_n}\right),$$于是\begin{eqnarray*}\begin{split} &\qquad \left(x_{n+1}+y_{n+1}+z_{n+1}\right)^2-\left(x_n+y_n+z_n\right)^2\\ &= 2\left(x_n+y_n+z_n\right)\left(\dfrac 1{x_n}+\dfrac 1{y_n}+\dfrac 1{z_n}\right)+\left(\dfrac 1{x_n}+\dfrac 1{y_n}+\dfrac 1{z_n}\right)^2.\end{split} \end{eqnarray*}由柯西不等式可得$$\left(x_n+y_n+z_n\right)\left(\dfrac 1{x_n}+\dfrac 1{y_n}+\dfrac 1{z_n}\right)\geqslant 9,$$于是就有$$\left(x_{n+1}+y_{n+1}+z_{n+1}\right)^2-\left(x_n+y_n+z_n\right)^2>18,$$分别取 $n$ 为 $1,2,\cdots ,199$,累加可得$$\left(x_{200}+y_{200}+z_{200}\right)^2-\left(x_1+y_1+z_1\right)^2>18(200-1),$$因此$$x_{200}+y_{200}+z_{200}>\sqrt{18\cdot 199},$$而 $\sqrt{18\cdot 199}<60$,放过头了.
略加调整,由于$$x_2+y_2+z_2=x_1+\dfrac {1}{x_1}+y_2+\dfrac{1}{y_1}+z_1+\dfrac{1}{z_1}\geqslant 6,$$于是$$\left(x_{200}+y_{200}+z_{200}\right)^2-\left(x_2+y_2+z_2\right)^2>18\cdot 198,$$从而可得$$x_{200}+y_{200}+z_{200}>\sqrt{18\cdot 198+36}=60,$$于是命题得证.
答案 解析 备注
0.115319s