已知数列 $\{a_n\}$ 满足 $2a_{n+1}=1-a_n^2$,且 $0<a_1<1$.求证:当 $n\geqslant 3$ 时,$\left|\dfrac{1}{a_n}-\left(\sqrt 2+1\right)\right|<\dfrac{12}{2^n}$.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
设迭代函数 $f(x)=\dfrac 12\left(1-x^2\right)$,那么函数的不动点为 $x=\sqrt 2-1$,一个保值区间是 $\left[0,\dfrac 12\right]$.
考虑到 $0<a_1<1$,于是 $0<a_2<\dfrac 12$,从而 $\dfrac 38<a_3<\dfrac 12$.
由不动点改造递推数列得$$|a_{n+1}-(\sqrt 2-1)|=\dfrac 12|a_n-(\sqrt 2-1)|\cdot|a_n+\sqrt 2-1|<\dfrac 12|a_n-(\sqrt 2-1)|,$$又当 $n=3$ 时,$|a_3-(\sqrt 2-1)|<\dfrac 18$,于是当 $n\geqslant 3$ 时,有$$\left|a_n-\left(\sqrt 2-1\right)\right|<\dfrac{1}{2^n}.$$而欲证明不等式即$$\left|\dfrac{\left(\sqrt 2-1\right)-a_n}{a_n\left(\sqrt 2-1\right)}\right|<\dfrac{12}{2^n},$$于是只需要证明$$\left|a_n\left(\sqrt 2-1\right)\right|>\dfrac{1}{12},$$也即$$a_n>\dfrac{\sqrt 2+1}{12},n\geqslant 3.$$事实上,当 $n\geqslant 3$ 时,有$$a_n>\dfrac 38>\dfrac{\sqrt 2+1}{12},$$于是原命题得证.
考虑到 $0<a_1<1$,于是 $0<a_2<\dfrac 12$,从而 $\dfrac 38<a_3<\dfrac 12$.
由不动点改造递推数列得$$|a_{n+1}-(\sqrt 2-1)|=\dfrac 12|a_n-(\sqrt 2-1)|\cdot|a_n+\sqrt 2-1|<\dfrac 12|a_n-(\sqrt 2-1)|,$$又当 $n=3$ 时,$|a_3-(\sqrt 2-1)|<\dfrac 18$,于是当 $n\geqslant 3$ 时,有$$\left|a_n-\left(\sqrt 2-1\right)\right|<\dfrac{1}{2^n}.$$而欲证明不等式即$$\left|\dfrac{\left(\sqrt 2-1\right)-a_n}{a_n\left(\sqrt 2-1\right)}\right|<\dfrac{12}{2^n},$$于是只需要证明$$\left|a_n\left(\sqrt 2-1\right)\right|>\dfrac{1}{12},$$也即$$a_n>\dfrac{\sqrt 2+1}{12},n\geqslant 3.$$事实上,当 $n\geqslant 3$ 时,有$$a_n>\dfrac 38>\dfrac{\sqrt 2+1}{12},$$于是原命题得证.
答案
解析
备注