求证:
【难度】
【出处】
2015年北京大学化学体验营数学试题
【标注】
  • 知识点
    >
    三角
    >
    三角恒等变换
    >
    和差化积与积化和差公式
  • 知识点
    >
    代数变形
    >
    代数式的形
    >
    分拆与裂项
  • 知识点
    >
    三角
    >
    三角恒等变换
    >
    和差化积与积化和差公式
  1. $\cos \dfrac {2\pi}{11}+\cos \dfrac {4\pi}{11}+\cos \dfrac {6\pi}{11}+\cos \dfrac {8\pi}{11}+\cos \dfrac {10\pi}{11}=-\dfrac1 2$;
    标注
    • 知识点
      >
      三角
      >
      三角恒等变换
      >
      和差化积与积化和差公式
    • 知识点
      >
      代数变形
      >
      代数式的形
      >
      分拆与裂项
    答案
    解析
    根据题意,有\[\begin{split}LHS&=\cos \dfrac {2\pi}{11}+\cos \dfrac {4\pi}{11}+\cos \dfrac {6\pi}{11}+\cos \dfrac {8\pi}{11}+\cos \dfrac {10\pi}{11}\\
    &=\dfrac{2\sin \dfrac{\pi}{11} \left (\cos \dfrac {2\pi}{11}+\cos \dfrac {4\pi}{11}+\cos \dfrac {6\pi}{11}+\cos \dfrac {8\pi}{11}+\cos \dfrac {10\pi}{11} \right )}{2\sin \dfrac {\pi}{11}}, \end{split}\]对上式中的分子应用积化和差公式,可得上式等于\[\dfrac {\sin \pi - \sin \dfrac {\pi}{11}}{2\sin{\dfrac {\pi}{11}}}=-\dfrac 1 2 .\]
  2. $\tan \dfrac {3\pi}{11}+4\sin \dfrac {2\pi}{11}=\sqrt {11}$.
    标注
    • 知识点
      >
      三角
      >
      三角恒等变换
      >
      和差化积与积化和差公式
    答案
    解析
    因为\[\begin{split}&\left (\sin \dfrac {3\pi}{11} +4 \sin \dfrac {2\pi}{11} \cos \dfrac {3\pi}{11} \right ) ^2 -11 \cos^2 \dfrac {3\pi}{11}\\=&\left (\sin \dfrac {3\pi}{11} +2 \sin \dfrac {5\pi}{11}-2 \sin \dfrac {\pi}{11} \right ) ^2 -11 \cos^2 \dfrac {3\pi}{11}\\=&12\sin ^2 \dfrac {3\pi}{11}+4\sin ^2 \dfrac {5\pi}{11}+4 \sin ^2\dfrac{\pi}{11}\\ &\qquad+4\sin\dfrac{3\pi}{11}\sin\dfrac{5\pi}{11}-4\sin\dfrac{3\pi}{11}\sin\dfrac{\pi}{11}-8\sin\dfrac{5\pi}{11}\sin\dfrac{\pi}{11}-11\\=&6\left(1-\cos\dfrac{6\pi}{11}\right)+2\left(1-\cos\dfrac{10\pi}{11}\right)+2\left(1-\cos\dfrac{2\pi}{11}\right)\\ &\qquad +2\left(\cos\dfrac{2\pi}{11}-\cos\dfrac{8\pi}{11}\right)-2\left(\cos\dfrac{2\pi}{11}-\cos\dfrac{4\pi}{11}\right)-4\left(\cos\dfrac{4\pi}{11}-\cos\dfrac{6\pi}{11}\right)-11\\=&-1-2\left(\cos \dfrac {2\pi}{11}+\cos \dfrac {4\pi}{11}+\cos \dfrac {6\pi}{11}+\cos \dfrac {8\pi}{11}+\cos \dfrac {10\pi}{11}\right)\\=&0,\end{split}\]所以$$\left(\tan\dfrac{3\pi}{11}+4\sin\dfrac{2\pi}{11}\right)^2=11,$$易知 $\tan\dfrac{3\pi}{11}+4\sin\dfrac{2\pi}{11}>0$,故$$\tan\dfrac{3\pi}{11}+4\sin\dfrac{2\pi}{11}=\sqrt{11}.$$
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.113221s