已知 $f\left( x \right)$ 为一元二次函数,且 $a,f\left( a \right),f\left( {f\left( a \right)} \right),f\left( {f\left( {f\left( a \right)} \right)} \right)$ 为正项等比数列,求证:$f\left( a \right) = a$.
【难度】
【出处】
2012年北京大学保送生试题
【标注】
【答案】
略
【解析】
由 $a,f\left( a \right),f\left( {f\left( a \right)} \right),f\left( {f\left( {f\left( a \right)} \right)} \right)$ 成等比数列得$$\dfrac{{f\left( a \right)}}{a} = \dfrac{{f\left( {f\left( a \right)} \right)}}{{f\left( a \right)}} = \dfrac{{f\left( {f\left( {f\left( a \right)} \right)} \right)}}{{f\left( {f\left( a \right)} \right)}},$$下面用反证法,若 $f(a)\ne a$,则有$$ \dfrac{{f\left( {f\left( a \right)} \right) - f\left( a \right)}}{{f\left( a \right) - a}} = \dfrac{{f\left( {f\left( {f\left( a \right)} \right)} \right) - f\left( {f\left( a \right)} \right)}}{{f\left( {f\left( a \right)} \right) - f\left( a \right)}}.$$所以,三点 $A\left( {a,f\left( a \right)} \right)$,$B\left( {f\left( a \right),f\left( {f\left( a \right)} \right)} \right)$,$C\left( {f\left( {f\left( a \right)} \right),f\left( {f\left( {f\left( a \right)} \right)} \right)} \right)$ 满足$${k_{AB}} = {k_{BC}},$$所以 $A,B,C$ 三点共线,与 $A,B,C$ 三点在抛物线上矛盾,所以 $ f\left( a \right) = a$.
答案
解析
备注