已知 $n\in\mathbb N^*$,求证:$\ln \left(2^2+1\right)+\ln \left(3^2+1\right)+\cdots +\ln \left(n^2+1\right)<1+2\ln n!$.
【难度】
【出处】
【标注】
  • 题型
    >
    不等式
    >
    级数不等式的证明
  • 知识点
    >
    微积分初步
    >
    导数问题中的技巧
    >
    进阶放缩
  • 知识点
    >
    不等式
    >
    放缩
    >
    分析通项法
【答案】
【解析】
欲证明$$\ln\left(2^2+1\right)+\ln\left(3^2+1\right)+\cdots+\ln\left(n^2+1\right)<1+2\ln n!,$$加强到$$\ln\left(2^2+1\right)+\ln\left(3^2+1\right)+\cdots+\ln\left(n^2+1\right)<1+2\ln n!-\dfrac 1{n+\dfrac 12}.$$只需要证明$$\ln \left(n^2+1\right)<2\ln n +\dfrac{1}{\left(n-\dfrac 12\right)\left(n+\dfrac 12\right)},$$即$$\ln\left(1+\dfrac{1}{n^2}\right)<\dfrac{1}{\left(n-\dfrac 12\right)\left(n+\dfrac 12\right)}.$$而我们熟知当 $x>0$ 时,有$$\ln(1+x)<\dfrac{2x}{x+2},$$于是$$\ln\left(1+\dfrac{1}{n^2}\right)<\dfrac{2}{2n^2+1}<\dfrac{1}{\left(n-\dfrac 12\right)\left(n+\dfrac 12\right)},$$命题得证.
答案 解析 备注
0.108475s