设 $a_1$,$a_2$,$\cdots$,$a_n$ 均为正实数,$n \in \mathbb N^*$.证明:$$\sum \limits_{k=1}^{n}\dfrac {k^2}{a_1+a_2+\cdots+a_k}<4\sum \limits_{k=1}^{n}\dfrac {k}{a_k}.$$
【难度】
【出处】
2014年全国高中数学联赛陕西省预赛(二试)
【标注】
【答案】
略
【解析】
因为 $a_i>0 (i=1,2,\cdots,n)$,所以由柯西不等式,得\[\begin{split}(a_1+a_2+\cdots+a_k)\left(\dfrac {1^2}{a_1}+\dfrac {2^2}{a_2}+\cdots +\dfrac {k^2}{a_k}\right)&\geqslant (1+2+\cdots+k)^2\\ &=\dfrac {k^2(k+1)^2}{4},\end{split}\]所以$$\dfrac {k^2}{a_1+a_2+\cdots+a_k} \leqslant \dfrac {4}{(k+1)^2}\left(\dfrac {1^2}{a_1}+\dfrac {2^2}{a_2}+\cdots +\dfrac {k^2}{a_k}\right),$$从而$$\sum \limits_{k=1}^{n}\dfrac {k^2}{a_1+a_2+\cdots+a_k}\leqslant 4 \sum \limits_{k=1}^{n}\dfrac {1}{(k+1)^2}\left(\dfrac {1^2}{a_1}+\dfrac {2^2}{a_2}+\cdots +\dfrac {k^2}{a_k}\right).$$因为\[\begin{split}&\sum \limits_{k=1}^{n}\dfrac {1}{(k+1)^2}\left(\dfrac {1^2}{a_1}+\dfrac {2^2}{a_2}+\cdots +\dfrac {k^2}{a_k}\right)\\ =& \dfrac {1}{2^2}\cdot \dfrac {1^2}{a_1}+\dfrac {1}{3^2}\left(\dfrac {1^2}{a_1}+\dfrac {2^2}{a_2}\right)+\cdots +\dfrac {1}{(n+1)^2}\left(\dfrac {1^2}{a_1}+\dfrac {2^2}{a_2}+\cdots +\dfrac {n^2}{a_n}\right) \\= & \left[\dfrac {1}{2^2}+\dfrac {1}{3^2}+\cdots +\dfrac {1}{(n+1)^2}\right]\dfrac {1^2}{a_1}+\left[\dfrac {1}{3^2}+\dfrac {1}{4^2}+\cdots +\dfrac {1}{(n+1)^2}\right]\dfrac {2^2}{a_2}+\cdots + \dfrac {1}{(n+1)^2}\cdot \dfrac {n^2}{a_n},\end{split}\]又\[\begin{split}&\dfrac {1}{(i+1)^2}+\dfrac {1}{(i+2)^2}+\cdots +\dfrac {1}{(n+1)^2} \\ <& \dfrac {1}{i(i+1)}+\dfrac {1}{(i+1)(i+2)}+\cdots +\dfrac {1}{n(n+1) }\\=& \left(\dfrac {1}{i}-\dfrac {1}{i+1}\right)+\left(\dfrac {1}{i+1}-\dfrac {1}{i+2}\right)+\cdots +\left(\dfrac {1}{n}-\dfrac {1}{n+1}\right) \\ =& \dfrac 1i-\dfrac {1}{n+1}<\dfrac 1i,\end{split}\]其中 $i=1,2 ,\cdots,n$,所以\[\begin{split}&\sum \limits_{k=1}^{n}\dfrac {1}{(k+1)^2}\left(\dfrac {1^2}{a_1}+\dfrac {2^2}{a_2}+\cdots +\dfrac {k^2}{a_k}\right)\\ <& \dfrac 11 \cdot \dfrac {1^2}{a_1}+\dfrac 12 \cdot \dfrac {2^2}{a_2}+\cdots +\dfrac 1n \cdot \dfrac {n^2}{a_n}\\ =& \dfrac {1}{a_1}+\dfrac {2}{a_2}+\cdots +\dfrac {n}{a_n}=\sum \limits_{k=1}^{n}\dfrac {k}{a_k},\end{split}\]故$$\sum \limits_{k=1}^{n}\dfrac {k^2}{a_1+a_2+\cdots+a_k}<4\sum \limits_{k=1}^{n}\dfrac {k}{a_k}.$$
答案
解析
备注