现有由数字 $1,2 , 3, 4 , 5$ 排列而成的一个五位数组(没有重复数字).规定:前 $i$ 个数不允许是 $1, 2, \cdots , i$ 的一个排列 $\left( {1 \leqslant i \leqslant 4} \right)$(如 $32154$ 就不可以,因为前三个数是 $1 , 2 ,3$ 的一个排列).试求满足这种条件的数组共有多少个?
【难度】
【出处】
2009年浙江大学自主招生考试
【标注】
【答案】
$71$
【解析】
利用容斥原理.
设集合 ${A_i}$($i = 1 ,2 , 3 ,4$)为由数字 $1 ,2 , 3, 4, 5$ 排列而成的一个五位数组(没有重复数字)组成的集合,且前 $i$ 个数是 $1 , 2 , \cdots ,i$ 的一个排列.则$$\operatorname{card} \left( {{A_1} \cup {A_2} \cup {A_3} \cup {A_4}} \right)$$为所求.
$\operatorname{card} {A_1} = 4! = 24$;
$\operatorname{card} {A_2} = 2! \times 3! = 12$;
$\operatorname{card} {A_3} = 3! \times 2! = 12$;
$\operatorname{card} {A_4} = 4! = 24$;
$\operatorname{card} \left( {{A_1} \cap {A_2}} \right) = 3! = 6$;
$\operatorname{card} \left( {{A_1} \cap {A_3}} \right) = 2! \times 2! = 4$;$
\operatorname{card} \left( {{A_1} \cap {A_4}} \right) = 3! = 6$;
$\operatorname{card} \left( {{A_2} \cap {A_3}} \right) = 2! \times 2! = 4$;
$\operatorname{card} \left( {{A_2} \cap {A_4}} \right) = 2! \times 2! = 4$;
$\operatorname{card} \left( {{A_3} \cap {A_4}} \right) = 3! = 6$;
$\operatorname{card} \left( {{A_1} \cap {A_2} \cap {A_3}} \right) = 2! = 2$;
$\operatorname{card} \left( {{A_1} \cap {A_2} \cap {A_4}} \right) = 2! = 2$;
$\operatorname{card} \left( {{A_1} \cap {A_3} \cap {A_4}} \right) = 2! = 2$;
$\operatorname{card} \left( {{A_2} \cap {A_3} \cap {A_4}} \right) = 2! = 2$;
$\operatorname{card} \left( {{A_1} \cap {A_2} \cap {A_3} \cap {A_4}} \right) = 1$.
所以$$\operatorname{card} \left( {{A_1} \cup {A_2} \cup {A_3} \cup {A_4}} \right) = 49.$$所以满足这种条件的数组共有 $5! - 49 = 71$ 个.
设集合 ${A_i}$($i = 1 ,2 , 3 ,4$)为由数字 $1 ,2 , 3, 4, 5$ 排列而成的一个五位数组(没有重复数字)组成的集合,且前 $i$ 个数是 $1 , 2 , \cdots ,i$ 的一个排列.则$$\operatorname{card} \left( {{A_1} \cup {A_2} \cup {A_3} \cup {A_4}} \right)$$为所求.
$\operatorname{card} {A_1} = 4! = 24$;
$\operatorname{card} {A_2} = 2! \times 3! = 12$;
$\operatorname{card} {A_3} = 3! \times 2! = 12$;
$\operatorname{card} {A_4} = 4! = 24$;
$\operatorname{card} \left( {{A_1} \cap {A_2}} \right) = 3! = 6$;
$\operatorname{card} \left( {{A_1} \cap {A_3}} \right) = 2! \times 2! = 4$;$
\operatorname{card} \left( {{A_1} \cap {A_4}} \right) = 3! = 6$;
$\operatorname{card} \left( {{A_2} \cap {A_3}} \right) = 2! \times 2! = 4$;
$\operatorname{card} \left( {{A_2} \cap {A_4}} \right) = 2! \times 2! = 4$;
$\operatorname{card} \left( {{A_3} \cap {A_4}} \right) = 3! = 6$;
$\operatorname{card} \left( {{A_1} \cap {A_2} \cap {A_3}} \right) = 2! = 2$;
$\operatorname{card} \left( {{A_1} \cap {A_2} \cap {A_4}} \right) = 2! = 2$;
$\operatorname{card} \left( {{A_1} \cap {A_3} \cap {A_4}} \right) = 2! = 2$;
$\operatorname{card} \left( {{A_2} \cap {A_3} \cap {A_4}} \right) = 2! = 2$;
$\operatorname{card} \left( {{A_1} \cap {A_2} \cap {A_3} \cap {A_4}} \right) = 1$.
所以$$\operatorname{card} \left( {{A_1} \cup {A_2} \cup {A_3} \cup {A_4}} \right) = 49.$$所以满足这种条件的数组共有 $5! - 49 = 71$ 个.
答案
解析
备注