有 $n$ 支队伍参加单循环比赛,设每支队伍获胜的场数分别为 $x_i$($i = 1 , 2 , 3 , \cdots , n$),失败的场数分别为 ${y_i}$($i = 1 , 2 , 3 , \cdots , n$),若 $\displaystyle \sum\limits_{i = 1}^n {x_i^3} = \sum\limits_{i = 1}^n {y_i^3} $,求证:$\displaystyle \sum\limits_{i = 1}^n {x_i^4} = \sum\limits_{i = 1}^n {y_i^4} $.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
由单循环赛得,$x_i + {y_i} = n - 1$($i = 1 , 2 , 3 , \cdots , n$),$\displaystyle \sum\limits_{k = 1}^n {x_i} = \sum\limits_{k = 1}^n {{y_i}} = {\rm{C}}_n^2 = \dfrac{{n\left( {n - 1} \right)}}{2}$.令 $n - 1 = k$,则 ${y_i} = k - x_i$($i = 1 , 2 , 3 , \cdots , n$),此时$$\sum\limits_{i = 1}^n {\left( {x_i^3 - {y_i}^3} \right)} = \sum\limits_{i = 1}^n {\left[ {x_i^3 - {{\left( {k - x_i} \right)}^3}} \right]} = \sum\limits_{i = 1}^n {\left( {2x_i^3 - 3kx_i^2 + 3{k^2}x_i - {k^3}} \right)},$$于是\[\begin{split}\sum\limits_{i = 1}^n {\left( {x_i^4 - y_i^4} \right)} &= \sum\limits_{i = 1}^n {\left[ {x_i^4 - {{\left( {k - x_i} \right)}^4}} \right]} = \sum\limits_{i = 1}^n {\left( {4kx_i^3 - 6{k^2}x_i^2 + 4{k^3}x_i - {k^4}} \right)} \\&= \sum\limits_{i = 1}^n {\left[ {\left( {6{k^2}x_i^2 - 6{k^3}x_i + 2{k^4}} \right) - 6{k^2}x_i^2 + 4{k^3}x_i - {k^4}} \right]}\\& = \sum\limits_{i = 1}^n {\left( {{k^4} - 2{k^3}x_i} \right)} = {k^3}\sum\limits_{i = 1}^n {\left( {k - 2x_i} \right)} = 0.\end{split}\]从而原命题得证.
答案
解析
备注