已知 $abc=-1$,$\dfrac{a^2}c+\dfrac{b}{c^2}=1$,$a^2b+b^2c+c^2a=t$,求 $ab^5+bc^5+ca^5$ 的值.
【难度】
【出处】
无
【标注】
【答案】
$3$
【解析】
由已知可得 $b = - \dfrac{1}{{ac}}$,${a^3}{c^2}=a{c^3}- 1$,于是$$a{b^5} + b{c^5} + c{a^5}= - \dfrac{1}{{{a^4}{c^5}}} - \dfrac{{{c^4}}}{a} + c{a^5}= \dfrac{{ - 1 - {a^3}{c^9} + {a^9}{c^6}}}{{{a^4}{c^5}}}= 3.$$
令 $a = - \dfrac{x}{y}$,$b = - \dfrac{y}{z}$,$c = - \dfrac{z}{x}$,则由 $\dfrac{a^2}c+\dfrac{b}{c^2}=1$ 整理得$${x^3}{z^2} + {y^3}{x^2} + {z^3}{y^2} = 0.$$于是\[\begin{split}a{b^5} + b{c^5} + c{a^5} &= \dfrac{x}{y} \cdot \dfrac{{{y^5}}}{{{z^5}}} + \dfrac{y}{z} \cdot \dfrac{{{z^5}}}{{{x^5}}} + \dfrac{z}{x} \cdot \dfrac{{{x^5}}}{{{y^5}}} \\&= \dfrac{{x{y^4}}}{{{z^5}}} + \dfrac{{y{z^4}}}{{{x^5}}} + \dfrac{{z{x^4}}}{{{y^5}}} \\&= \dfrac{{{x^6}{y^9} + {y^6}{z^9} + {z^9}{x^6}}}{{{x^5}{y^5}{z^5}}} \\&= \dfrac{{3\left( {{x^2}{y^3}} \right) \cdot \left( {{y^3}{z^2}} \right) \cdot \left( {{z^3}{x^2}} \right)}}{{{x^5}{y^5}{z^5}}} = 3.\end{split}\]
由 $\dfrac{{{a^2}}}{c} + \dfrac{b}{{{c^2}}} = 1$ 得 ${a^2}c = {c^2} - b$.根据轮换对称可得 ${b^2}a = {a^2} - c$,${c^2}b = {b^2} - a$.
于是\[\begin{split}a{b^5} + b{c^5} + c{a^5} &= {b^3}\left( {{a^2} - c} \right) + {c^3}\left( {{b^2} - a} \right) + {a^3}\left( {{c^2} - b} \right)\\&= {a^2}{b^3} + {b^2}{c^3} + {c^2}{a^3} - \left( {{b^3}c + {c^3}a + {a^3}b} \right)\\&= ab\left( {{a^2} - c} \right) + bc\left( {{b^2} - a} \right) + ca\left( {{c^2} - b} \right) - \left( {{b^3}c + {c^3}a + {a^3}b} \right)\\&= 3.\end{split}\]
当 $c > 0$ 时,令 $a = {c^{\frac{1}{2}}}\sin \theta$,$b = {c^2}{\cos ^2}\theta$,则由 $abc = - 1$,得 ${c^{\frac{7}{2}}} = - \dfrac{1}{{\sin \theta {{\cos }^2}\theta }}$.
于是\[\begin{split}a{b^5} + b{c^5} + c{a^5} &= {c^{\frac{{21}}{2}}}\sin \theta {\cos ^{10}}\theta + {c^7}{\cos ^2}\theta + {c^{\frac{7}{2}}}{\sin ^5}\theta \\&= - \dfrac{{\sin \theta {{\cos }^{10}}\theta }}{{{{\sin }^3}\theta {{\cos }^6}\theta }} + \dfrac{{{{\cos }^2}\theta }}{{{{\sin }^2}\theta {{\cos }^4}\theta }} - \dfrac{{{{\sin }^5}\theta }}{{\sin \theta {{\cos }^2}\theta }}\\&= - \dfrac{{{{\cos }^4}\theta }}{{{{\sin }^2}\theta }} + \dfrac{1}{{{{\sin }^2}\theta {{\cos }^2}\theta }} - \dfrac{{{{\sin }^4}\theta }}{{{{\cos }^2}\theta }}\\&= \dfrac{{ - {{\cos }^6}\theta + 1 - {{\sin }^6}\theta }}{{{{\sin }^2}\theta {{\cos }^2}\theta }} \\&= 3.\end{split}\]当 $c < 0$ 时,令 $a = {\left( { - c} \right)^{\frac{1}{2}}}\tan \theta $,$b = {c^2}{\sec ^2}\theta$,以下略.
答案
解析
备注