求证:$2 \leqslant {\left( {1+\dfrac{1}{n}} \right)^n}<3$.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
利用均值不等式,有\[\begin{split}
{\left( {1+\dfrac{1}{n}} \right)^n}
&=\left( {1+\dfrac{1}{n}} \right) \cdot \left( {1+\dfrac{1}{n}} \right) \cdot \cdots \cdot \left( {1+\dfrac{1}{n}} \right) \cdot 1\\
&<{\left( {\dfrac{{\left( {1+\dfrac{1}{n}} \right) \cdot n+1}}{{n+1}}} \right)^{{{n+1}}}}\\
&={\left( {1+\dfrac{1}{{n+1}}} \right)^{{{n+1}}}},\end{split}\]于是 ${\left( {1+\dfrac{1}{n}} \right)^n}$ 单调递增,因此 ${\left( {1+\dfrac{1}{n}} \right)^n} \geqslant 2$.
另一方面,有\[\left(1+\dfrac 1n\right)^n\cdot \left(1-\dfrac 1m\right)^m<\left(\dfrac{\left(1+\dfrac 1n\right)\cdot n+\left(1-\dfrac 1m\right)\cdot m}{m+n}\right)^{m+n}=1,\]其中 $m\in\mathbb N^*$.取 $m=6$,可得\[\left(1+\dfrac 1n\right)^n\cdot \dfrac{5^6}{6^6}<1,\]j因此\[\left(1+\dfrac 1n\right)^n<\dfrac{6^6}{5^6}=\dfrac{46656}{15625}<3.\]
{\left( {1+\dfrac{1}{n}} \right)^n}
&=\left( {1+\dfrac{1}{n}} \right) \cdot \left( {1+\dfrac{1}{n}} \right) \cdot \cdots \cdot \left( {1+\dfrac{1}{n}} \right) \cdot 1\\
&<{\left( {\dfrac{{\left( {1+\dfrac{1}{n}} \right) \cdot n+1}}{{n+1}}} \right)^{{{n+1}}}}\\
&={\left( {1+\dfrac{1}{{n+1}}} \right)^{{{n+1}}}},\end{split}\]于是 ${\left( {1+\dfrac{1}{n}} \right)^n}$ 单调递增,因此 ${\left( {1+\dfrac{1}{n}} \right)^n} \geqslant 2$.
另一方面,有\[\left(1+\dfrac 1n\right)^n\cdot \left(1-\dfrac 1m\right)^m<\left(\dfrac{\left(1+\dfrac 1n\right)\cdot n+\left(1-\dfrac 1m\right)\cdot m}{m+n}\right)^{m+n}=1,\]其中 $m\in\mathbb N^*$.取 $m=6$,可得\[\left(1+\dfrac 1n\right)^n\cdot \dfrac{5^6}{6^6}<1,\]j因此\[\left(1+\dfrac 1n\right)^n<\dfrac{6^6}{5^6}=\dfrac{46656}{15625}<3.\]
答案
解析
备注