设数列 $a_1,a_2,\cdots ,a_n,\cdots $ 中每一项都不为 $0$,求证:$\{a_n\}$ 是等差数列的充分必要条件是:对任何 $n\in\mathbb N^*$,都有 $\dfrac{1}{a_1a_2}+\dfrac{1}{a_2a_3}+\cdots +\dfrac{1}{a_na_{n+1}}=\dfrac{n}{a_1a_{n+1}}$.
【难度】
【出处】
【标注】
【答案】
【解析】
必要性设等差数列 $\{a_n\}$ 的公差为 $d$,则$$\sum_{i=1}^n\dfrac{1}{a_ia_{i+1}}=\sum_{i=1}^n\dfrac 1d\cdot \dfrac{a_{i+1}-a_i}{a_ia_{i+1}}=\sum_{i=1}^n\dfrac 1d\left(\dfrac{1}{a_{i+1}}-\dfrac{1}{a_i}\right)=\dfrac 1d\left(\dfrac 1{a_1}-\dfrac{1}{a_{n+1}}\right)=\dfrac{n}{a_1a_{n+1}}.$$充分性根据题意,当 $n\geqslant 2$ 时,有$$\Delta\left(\dfrac{1}{a_1a_2}+\dfrac{1}{a_2a_3}+\cdots +\dfrac{1}{a_na_{n+1}}\right)=\Delta\dfrac{n}{a_1a_{n+1}},$$即$$\dfrac{1}{a_na_{n+1}}=\dfrac{n}{a_1a_{n+1}}-\dfrac{n-1}{a_1a_n},$$也即$$na_1-(n-1)a_1=na_n-(n-1)a_{n+1},$$也即$$\dfrac{a_{n+1}-a_1}{n}=\dfrac{a_n-a_1}{n-1},$$因此可得$$\dfrac{a_{n+1}-a_1}{n}=\dfrac{a_n-a_1}{n-1}=\cdots =a_2-a_1$$为常数,因此数列 $\{a_n\}$ 为等差数列.
答案 解析 备注
0.115537s