求证:$\displaystyle\prod\limits_{k=1}^n {\left( {1+\dfrac{1}{{{9^k}}}} \right)<{\rm{2}}} $.
【难度】
【出处】
无
【标注】
【答案】
略
【解析】
根据题意,有\[\begin{split}
\ln \prod\limits_{k=1}^n {\left( {1+\dfrac{1}{{{9^k}}}} \right)} &= \sum\limits_{k=1}^n {\ln \left( {1+\dfrac{1}{{{9^k}}}} \right)} \\
&< \sum\limits_{k=1}^n {\dfrac{{\dfrac{1}{{{9^k}}}}}{{1+\dfrac{1}{{{9^k}}}}}}=\sum\limits_{k=1}^n {\dfrac{1}{{{9^k}+1}}} \\
&< \dfrac{{\dfrac{1}{{{9^1}+1}}}}{{1-\dfrac{1}{9}}}=\dfrac{9}{{80}}<\ln 2.\end{split}\]
\ln \prod\limits_{k=1}^n {\left( {1+\dfrac{1}{{{9^k}}}} \right)} &= \sum\limits_{k=1}^n {\ln \left( {1+\dfrac{1}{{{9^k}}}} \right)} \\
&< \sum\limits_{k=1}^n {\dfrac{{\dfrac{1}{{{9^k}}}}}{{1+\dfrac{1}{{{9^k}}}}}}=\sum\limits_{k=1}^n {\dfrac{1}{{{9^k}+1}}} \\
&< \dfrac{{\dfrac{1}{{{9^1}+1}}}}{{1-\dfrac{1}{9}}}=\dfrac{9}{{80}}<\ln 2.\end{split}\]
答案
解析
备注