证明:$\displaystyle \sum\limits_{k=1}^n {\dfrac{1}{{{k^4}}}}<\dfrac{{53}}{{45}}$.
【难度】
【出处】
【标注】
  • 知识点
    >
    代数变形
    >
    代数式的形
    >
    分拆与裂项
  • 题型
    >
    不等式
    >
    级数不等式的证明
【答案】
【解析】
利用\[\begin{split}\dfrac{1}{{{n^4}}} &< \dfrac{1}{{\left( {n-\dfrac{3}{2}} \right)\left( {n-\dfrac{1}{2}} \right)\left( {n+\dfrac{1}{2}} \right)\left( {n+\dfrac{3}{2}} \right)}}\\
&= \dfrac{1}{3}\left[ {\dfrac{1}{{\left( {n-\dfrac{3}{2}} \right)\left( {n-\dfrac{1}{2}} \right)\left( {n+\dfrac{1}{2}} \right)}}-\dfrac{1}{{\left( {n-\dfrac{1}{2}} \right)\left( {n+\dfrac{1}{2}} \right)\left( {n+\dfrac{3}{2}} \right)}}} \right].\end{split}\]
答案 解析 备注
0.122692s