设 $f_1(x)=\dfrac{2}{1+x}$,$f_{n+1}(x)=f_1[f_n(x)]$,$a_n=\dfrac{f_n(0)-1}{f_n(0)+2}$,其中 $n\in\mathbb N^*$.
【难度】
【出处】
2008年全国高中数学联赛黑龙江省预赛
【标注】
  1. 求数列 $\{a_n\}$ 的通项公式;
    标注
    答案
    $a_n=\dfrac14\cdot\left(-\dfrac12\right)^{n-1}$
    解析
    由题意得 $f_1(0)=2,a_1=\dfrac14$,且$$f_{n+1}(0)=f_1[f_n(0)]=\dfrac{2}{1+f_{n}(0)},$$因此有$$a_{n+1}=\dfrac{f_{n+1}(0)-1}{f_{n+1}(0)+2}=-\dfrac12\cdot\dfrac{f_n(0)-1}{f_n(0)+2}=-\dfrac12a_n,$$即 $\{a_n\}$ 是首项为 $\dfrac14$,公比为 $-\dfrac12$ 的等比数列,因此$$a_n=\dfrac14\cdot\left(-\dfrac12\right)^{n-1}.$$
  2. 若 $T_{2n}=a_1+2a_2+3a_3+\cdots+2na_{2n}$,$Q_n=\dfrac{4n^2+n}{4n^2+4n+1}$,其中 $n\in\mathbb N^*$,试比较 $9T_{2n}$ 与 $Q_n$ 的大小,并说明理由.
    标注
    答案
    当 $n=1$ 或 $n=2$ 时,$9T_{2n}<Q_n$;当 $n\geqslant3$ 时,$9T_{2n}>Q_n$
    解析
    由题意知\[\begin{split}T_{2n}&=a_1+2a_2+3a_3+\cdots+2na_{2n},\\-\dfrac12T_{2n}&=a_2+3a_3+\cdots+(2n-1)a_{2n}+2na_{2n+1},\end{split}\]两式相减得\[\begin{split}\dfrac32T_{2n}&=(a_1+a_2+\cdots+a_{2n})-2n\cdot\dfrac14\cdot\left(-\dfrac12\right)^{2n}\\&=\dfrac16-\dfrac16\cdot\left(-\dfrac12\right)^2+\dfrac{n}{4}\left(-\dfrac12\right)^{2n-1},\end{split}\]因此$$T_{2n}=\dfrac19\left(1-\dfrac{3n+1}{2^{2n}}\right),$$故$$9T_{2n}-Q_n=\dfrac{3n+1}{(2n+1)^2}-\dfrac{3n+1}{2^{2n}},$$即比较 $(2n+1)^2$ 与 $2^{2n}$ 的大小.
    当 $n=1$ 时,$$2^{2n}=4\leqslant(2n+1)^2=9.$$当 $n=2$ 时,$$2^{2n}=16<(2n+1)^2=25.$$当 $n\geqslant 3$ 时,$$\begin{split}2^{2n}&=\left(\mathrm{C}_n^0+\mathrm{C}_n^1+\cdots+\mathrm{C}_n^n\right)^2\\&>\left(1+n+\dfrac{n(n-1)}{2}\right)^2\\&>(1+n+n^2)^2\\&=(2n+1)^2,\end{split}$$故当 $n=1$ 或 $2$ 时,$9T_{2n}<Q_n$;当 $n\geqslant3$ 时,$9T_{2n}>Q_n$.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.112064s