已知互不相同的正实数 $x_{1},x_{2},x_{3},x_{4}$ 满足不等式\[(x_{1}+x_{2}+x_{3}+x_{4})\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}\right)<17.\]求证:从 $x_{1},x_{2},x_{3},x_{4}$ 中任取 $3$ 个数作为边长,共可构成 $4$ 个不同的三角形.
【难度】
【出处】
2016年全国高中数学联赛湖南省预赛
【标注】
【答案】
略
【解析】
由于 ${\rm C}_{4}^{3}=4$,故从 $x_{1},x_{2},x_{3},x_{4}$ 中任取 $3$ 个数作为边长,共可构成 $4$ 个不同的三角形,即是任取 $3$ 个数作为边长均可构成不同的三角形.下面用反证法给出证明:若存在某三个数为边长不能构成三角形,由于对称性可知不妨设这三个数为 $x_{1},x_{2},x_{3}$,且满足 $x_{1}\geqslant x_{2}+x_{3}$.
记 $M=(x_{1}+x_{2}+x_{3}+x_{4})\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}\right)$,因为\[\begin{split}M&=(x_{1}+x_{2}+x_{3}+x_{4})\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}\right)\\&=4+\dfrac{x_{1}}{x_{2}}+\dfrac{x_{1}}{x_{3}}+\dfrac{x_{2}}{x_{1}}+\dfrac{x_{3}}{x_{1}}+\left[\left(\dfrac{x_{1}}{x_{4}}+\dfrac{x_{4}}{x_{1}}\right)+\left(\dfrac{x_{2}}{x_{3}}+\dfrac{x_{3}}{x_{2}}\right)+\left(\dfrac{x_{2}}{x_{4}}+\dfrac{x_{4}}{x_{2}}\right)+\left(\dfrac{x_{3}}{x_{4}}+\dfrac{x_{4}}{x_{3}}\right)\right]\\&\geqslant
4+x_{1}\left(\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}\right)+\dfrac{x_{2}+x_{3}}{x_{1}}+2\times 4\\&=12+x_{1}\left(\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}\right)+\dfrac{x_{2}+x_{3}}{x_{1}}.\end{split}\]由 $(x_{2}+x_{3})\left(\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}\right)\geqslant 4$,知\[\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}\geqslant \dfrac{4}{x_{2}+x_{3}},\]并设 $\dfrac{x_{1}}{x_{2}+x_{3}}=t, t\geqslant 1$,得\[\begin{split}M&=(x_{1}+x_{2}+x_{3}+x_{4})\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}\right)\\&\geqslant 12+\dfrac{4x_{1}}{x_{2}+x_{3}}+\dfrac{x_{2}+x_{3}}{x_{1}}\\&=12+4t+\dfrac{1}{t}.\end{split}\]由条件,得 $12+4t+\dfrac{1}{t}<17$,即 $4t+\dfrac{1}{t}-5<0,t\geqslant 1$.事实上,当 $t\geqslant 1$ 时,\[4t+\dfrac{1}{t}-5=\dfrac{4t^{2}-5t+1}{t}=\dfrac{(4t-1)(t-1)}{t}\geqslant 0,\]这与上面所得结论矛盾.所以,原命题成立.
记 $M=(x_{1}+x_{2}+x_{3}+x_{4})\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}\right)$,因为\[\begin{split}M&=(x_{1}+x_{2}+x_{3}+x_{4})\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}\right)\\&=4+\dfrac{x_{1}}{x_{2}}+\dfrac{x_{1}}{x_{3}}+\dfrac{x_{2}}{x_{1}}+\dfrac{x_{3}}{x_{1}}+\left[\left(\dfrac{x_{1}}{x_{4}}+\dfrac{x_{4}}{x_{1}}\right)+\left(\dfrac{x_{2}}{x_{3}}+\dfrac{x_{3}}{x_{2}}\right)+\left(\dfrac{x_{2}}{x_{4}}+\dfrac{x_{4}}{x_{2}}\right)+\left(\dfrac{x_{3}}{x_{4}}+\dfrac{x_{4}}{x_{3}}\right)\right]\\&\geqslant
4+x_{1}\left(\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}\right)+\dfrac{x_{2}+x_{3}}{x_{1}}+2\times 4\\&=12+x_{1}\left(\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}\right)+\dfrac{x_{2}+x_{3}}{x_{1}}.\end{split}\]由 $(x_{2}+x_{3})\left(\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}\right)\geqslant 4$,知\[\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}\geqslant \dfrac{4}{x_{2}+x_{3}},\]并设 $\dfrac{x_{1}}{x_{2}+x_{3}}=t, t\geqslant 1$,得\[\begin{split}M&=(x_{1}+x_{2}+x_{3}+x_{4})\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}\right)\\&\geqslant 12+\dfrac{4x_{1}}{x_{2}+x_{3}}+\dfrac{x_{2}+x_{3}}{x_{1}}\\&=12+4t+\dfrac{1}{t}.\end{split}\]由条件,得 $12+4t+\dfrac{1}{t}<17$,即 $4t+\dfrac{1}{t}-5<0,t\geqslant 1$.事实上,当 $t\geqslant 1$ 时,\[4t+\dfrac{1}{t}-5=\dfrac{4t^{2}-5t+1}{t}=\dfrac{(4t-1)(t-1)}{t}\geqslant 0,\]这与上面所得结论矛盾.所以,原命题成立.
答案
解析
备注