设 $a > 0$,$a \ne 1$,则关于函数 $f\left( x \right) = \dfrac{{{a^x} - {a^{ - x}}}}{2}$ 和 $g\left( x \right) = \dfrac{{\left( {{a^x} + 1} \right)x}}{{{a^x} - 1}}$ 的说法正确的是 \((\qquad)\)
A: $f\left( x \right)$ 和 $g\left( x \right)$ 均为奇函数
B: $f\left( x \right)$ 和 $g\left( x \right)$ 均为偶函数
C: $f\left( x \right)$ 是奇函数但 $g\left( x \right)$ 是偶函数
D: 以上说法都不对
【难度】
【出处】
【标注】
  • 知识点
    >
    函数
    >
    函数的图象与性质
    >
    函数的奇偶性
  • 知识点
    >
    函数
    >
    常见初等函数
    >
    指数函数
【答案】
C
【解析】
计算 $f(-x)$ 与 $g(-x)$ 即得.
题目 答案 解析 备注
0.106048s