已知椭圆 $C:\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$ 过 $A(2,0),B(0,1)$ 两点.
【难度】
【出处】
2016年高考北京卷(文)
【标注】
  • 知识点
    >
    解析几何
    >
    椭圆
    >
    椭圆的方程
    >
    椭圆的标准方程
  • 知识点
    >
    解析几何
    >
    椭圆
    >
    椭圆的方程
    >
    椭圆的参数方程
  • 知识点
    >
    解析几何
    >
    直线与圆锥曲线
    >
    面积计算
  • 题型
    >
    解析几何
    >
    圆锥曲线的定点定值问题
  • 知识点
    >
    解析几何
    >
    解析几何中的基本公式
    >
    截距坐标公式
  1. 求椭圆 $C$ 的方程及离心率;
    标注
    • 知识点
      >
      解析几何
      >
      椭圆
      >
      椭圆的方程
      >
      椭圆的标准方程
    答案
    $\dfrac{\sqrt 3}2$
    解析
    根据题意,有 $a=2$,$b=1$,于是椭圆的方程为$$\dfrac{x^2}4+y^2=1,$$其离心率 $e=\dfrac{\sqrt 3}2$.
  2. 设 $P$ 为第三象限内一点且在椭圆 $C$ 上,直线 $PA$ 与 $y$ 轴交于点 $M$,直线 $PB$ 与 $x$ 轴交于点 $N$,求证:四边形 $ABNM$ 的面积为定值.
    标注
    • 知识点
      >
      解析几何
      >
      椭圆
      >
      椭圆的方程
      >
      椭圆的参数方程
    • 知识点
      >
      解析几何
      >
      直线与圆锥曲线
      >
      面积计算
    • 题型
      >
      解析几何
      >
      圆锥曲线的定点定值问题
    • 知识点
      >
      解析几何
      >
      解析几何中的基本公式
      >
      截距坐标公式
    答案
    定值为 $2$
    解析
    四边形 $ABNM$ 的面积 $S=\dfrac 12\cdot |AN|\cdot |BM|$.设 $P$ 点坐标为 $(2\cos{\theta},\sin\theta)$,可求得 $M$ 点坐标为 $\left(0,\dfrac{\sin\theta}{1-\cos\theta}\right)$,$N$ 点坐标为 $\left(\dfrac{2\cos\theta}{1-\sin\theta},0\right)$,故$$\left|AN\right|\cdot\left|BM\right|=\left|\left(\dfrac{2\cos\theta}{1-\sin\theta}-2\right)\left(\dfrac{\sin\theta}{1-\cos\theta}-1\right)\right|=2\left|\dfrac{\left(\sin\theta+\cos\theta -1\right)^2}{\left(1-\sin\theta\right)\left(1-\cos\theta\right)}\right|=4,$$故四边形 $ABNM$ 的面积 $S=\dfrac 12\cdot |AN|\cdot |BM|=2$
    因此原命题得证.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.108335s