试构造函数 $f\left( x \right)$,$g\left( x \right)$,其定义域为 $\left( {0,1} \right)$,值域为 $\left[ {0,1} \right]$,分别满足:
【难度】
【出处】
2006年复旦大学推优保送生考试(A卷)
【标注】
  • 方法
    >
    思考方式
    >
    映射计数法
  • 知识点
    >
    函数
    >
    函数的图象与性质
    >
    函数的零点
  • 方法
    >
    思考方式
    >
    映射计数法
  • 知识点
    >
    函数
    >
    函数的图象与性质
    >
    函数的零点
  1. 对于任意 $a \in \left[ {0,1} \right]$,$f\left( x \right) = a$ 只有一解;
    标注
    • 方法
      >
      思考方式
      >
      映射计数法
    • 知识点
      >
      函数
      >
      函数的图象与性质
      >
      函数的零点
    答案
    $f\left( x \right) =\begin{cases}
    2x,x = \dfrac{1}{{{2^n}}},n = 1,2,3, \cdots \\
    3x,x = \dfrac{1}{{{3^n}}},n = 2,3, \cdots \\
    0,x = \dfrac{1}{3} \\
    x,etc. \\
    \end{cases}$
    解析
    构造 $f(x)$ 如下:$f\left( x \right) =\begin{cases}
    2x,x = \dfrac{1}{{{2^n}}},n = 1,2,3, \cdots \\
    3x,x = \dfrac{1}{{{3^n}}},n = 2,3, \cdots \\
    0,x = \dfrac{1}{3} \\
    x,etc. \\
    \end{cases}$
  2. 对于任意 $a \in \left[ {0,1} \right]$,$g\left( x \right) = a$ 有无穷多个解.
    标注
    • 方法
      >
      思考方式
      >
      映射计数法
    • 知识点
      >
      函数
      >
      函数的图象与性质
      >
      函数的零点
    答案
    $g\left( x \right) =\begin{cases}
    0,x = \dfrac{1}{{{2^i}}},i = 1,2,3, \cdots \\
    f\left( {{g_i}\left( x \right)} \right),etc, \\
    \end{cases}$
    其中\[\begin{split} f\left( x \right) &=\begin{cases}
    2x,x = \dfrac{1}{{{2^n}}},n = 1,2,3, \cdots \\
    3x,x = \dfrac{1}{{{3^n}}},n = 2,3, \cdots \\
    0,x = \dfrac{1}{3} \\
    x,etc. \\
    \end{cases}\\{g_i}\left( x \right) &= {2^{i + 1}}\left( {x - \dfrac{1}{{{2^{i + 1}}}}} \right),i = 1,2,3, \cdots \end{split}\]
    解析
    定义$$g\left( {\dfrac{1}{{{2^i}}}} \right) = 0,i = 1,2,3, \cdots .$$有 $\left( {0,1} \right) = \bigcup\limits_{i = 0}^{ + \infty } {\left[ {\dfrac{1}{{{2^{i + 1}}}}, \dfrac{1}{{ {2^i}}}} \right)} $,$\forall x \in \left( {\dfrac{1}{{{2^{i + 1}}}},\dfrac{1}{{{2^i}}}} \right)$,先作映射$${g_i}\left( x \right) = {2^{i + 1}}\left( {x - \dfrac{1}{{{2^{i + 1}}}}} \right),$$这样就把 $\left( {\dfrac{1}{{{2^{i + 1}}}},\dfrac{1}{{{2^i}}}} \right)$ 扩充到 $\left( {0,1} \right)$.于是$$g\left(x \right)=\begin{cases}
    0,x = \dfrac{1}{{{2^i}}},i = 1,2,3, \cdots \\
    f\left( {{g_i}\left( x \right)} \right),etc. \\
    \end{cases}$$其中 $ {g_i}\left(x \right)= {2^{i + 1}}\left({x - \dfrac{1}{{{2^{i + 1}}}}} \right),i = 1,2,3,\cdots $.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.108078s