设 $b > 0$,数列 $\left\{ {a_n} \right\}$ 满足 ${a_1} = b$,${a_n} = \dfrac{{nb{a_{n - 1}}}}{{{a_{n - 1}} + 2n - 2}}\left( {n \geqslant 2} ,n\in {\mathbb N^+}\right)$.
【难度】
【出处】
无
【标注】
-
求数列 $\left\{ {a_n} \right\}$ 的通项公式;标注答案${a_n} = {\begin{cases}
2&\left( {b = 2} \right), \\
\dfrac{{n{b^n}\left( {2 - b} \right)}}{{{2^n} - {b^n}}}&\left( {b > 0,b \ne 2} \right). \\
\end{cases}}$解析法1
当 $b=2$ 时,$\dfrac n{a_n}=\dfrac{n-1}{a_{n-1}}+\dfrac 12$,则数列 $\left\{\dfrac n{a_n}\right\}$ 是以 $\dfrac 1{a_1}=\dfrac 12$ 为首项,$\dfrac 12$ 为公差的等差数列,
所以 $\dfrac n{a_n}=\dfrac n2$,
从而 $a_n=2$.
当 $b\ne 2$ 时,$a_1=b$,$a_2=\dfrac {2b^2}{b+2}=\dfrac{2b^2(b-2)}{b^2-2^2}$,$a_3=\dfrac{3b^3}{b^2+2b+4}=\dfrac{3b^3(b-2)}{b^3-2^3}$,
猜想 $a_n=\dfrac{nb^n(b-2)}{b^n-2^n}$,下面用数学归纳法证明:
① 当 $n=1$ 时,猜想显然成立;
② 假设当 $n=k$ 时,$a_k=\dfrac{kb^k(b-2)}{b^k-2^k}$,则\[a_{k+1}=\dfrac{(k+1)b\cdot a_k}{a_k+2k}=\dfrac{(k+1)b\cdot kb^k(b-2)}{kb^k(b-2)+2k\cdot (b^k-2^k)}=\dfrac{(k+1)b^{k+1}(b-2)}{b^{k+1}-2^{k+1}},\]所以当 $n=k+1$ 时,猜想成立,
由 ①② 知,$\forall n\in \mathbb N^+$,$a_n=\dfrac{nb^n(b-2)}{b^n-2^n}$.
法2
由 ${a_n} = \dfrac{{nb{a_{n - 1}}}}{{{a_{n - 1}} + 2n - 2}}$,可得\[\dfrac{n}{a_n} = \dfrac{2}{b} \cdot \dfrac{n - 1}{{{a_{n - 1}}}} + \dfrac{1}{b}, \]当 $b = 2$ 时,\[\dfrac{n}{a_n} = \dfrac{n - 1}{{{a_{n - 1}}}} + \dfrac{1}{2},\]则数列 $\left\{ {\dfrac{n}{a_n}} \right\}$ 是以 $\dfrac{1}{a_1} = \dfrac{1}{2}$ 为首项,$\dfrac{1}{2}$ 为公差的等差数列,所以\[\dfrac{n}{a_n} = \dfrac{n}{2},\]从而\[{a_n} = 2.\]当 $b \ne 2$ 时,可变形成\[\dfrac{n}{a_n} + \dfrac{1}{2 - b} = \dfrac{2}{b}\left( {\dfrac{n - 1}{{{a_{n - 1}}}} + \dfrac{1}{2 - b}} \right),\]则数列 $\left\{ {\dfrac{n}{a_n} + \dfrac{1}{2 - b}} \right\}$ 是以 $\dfrac{1}{a_1} + \dfrac{1}{2 - b} = \dfrac{2}{{b\left( {2 - b} \right)}}$ 为首项,$\dfrac{2}{b}$ 为公比的等比数列,结合等比数列公式\[\begin{split}\dfrac{n}{a_n} + \dfrac{1}{2 - b} & = \dfrac{2}{{b\left( {2 - b} \right)}} \cdot {\left( {\dfrac{2}{b}} \right)^{n - 1}} \\& = \dfrac{1}{2 - b} \cdot {\left( {\dfrac{2}{b}} \right)^n},\end{split}\]所以\[ {a_n} = \dfrac{{n{b^n}\left( {2 - b} \right)}}{{{2^n} - {b^n}}},\]综上\[{a_n} = {\begin{cases}2&\left( {b = 2} \right), \\
\dfrac{{n{b^n}\left( {2 - b} \right)}}{{{2^n} - {b^n}}}&\left( {b > 0,b \ne 2} \right). \\
\end{cases}}\] -
证明:对于一切正整数 $n$,${a_n} \leqslant \dfrac{{{b^{n + 1}}}}{{{2^{n + 1}}}} + 1$.标注答案略解析当 $b = 2$ 时,${a_n} = 2$,$\dfrac{{{b^{n + 1}}}}{{{2^{n + 1}}}} + 1 = 2$,所以\[ {a_n} = \dfrac{{{b^{n + 1}}}}{{{2^{n + 1}}}} + 1,\]从而原不等式成立;
法1
当 $b\ne 2$ 时,$$a_n\leqslant \dfrac{b^{n+1}}{2^{n+1}}+1\Leftrightarrow \dfrac{nb^n(2-b)}{2^n-b^n}\leqslant \dfrac {b^{n+1}}{2^{n+1}}+1 \Leftrightarrow \dfrac{\dfrac{b^{n+1}}{2^n}-\dfrac{2^{n+1}}{b^n}}{b-2}\geqslant 2n+1.$$设 $b_n=\dfrac{\dfrac{b^{n+1}}{2^n}-\dfrac{2^{n+1}}{b^n}}{b-2}$,注意到$$\left(\dfrac{b^{n+1}}{2^n}-\dfrac{2^{n+1}}{b^n}\right)\left(\dfrac b2 +\dfrac 2b\right)=\dfrac {b^{n+2}}{2^{n+1}}-\dfrac{2^{n+2}}{b^{n+1}}+\dfrac{b^n}{2^{n-1}}-\dfrac{2^n}{b^{n-1}}.$$于是$$b_{n+1}+b_{n-1}=\left(\dfrac b2+\dfrac 2b\right)\cdot b_n\geqslant 2b_n,$$所以$$b_{n+1}-b_n\geqslant b_n-b_{n-1}.$$考虑$$b_2-b_1=\dfrac {\dfrac{b^3}{4}-\dfrac{8}{b^2}-\dfrac{b^2}{2}+\dfrac{4}{b}}{b-2}=\dfrac{b^5-32-2b^4+16b}{4b^2(b-2)}=\dfrac{b^2}{4}+\dfrac{4}{b^2}\geqslant 2,$$而 $b_1=\dfrac{b^2+2b+4}{2b}\geqslant 3$,所以 $b_n\geqslant 2n+1$.
法2
当 $b \ne 2$ 时,用分析法,要证\[{a_n} \leqslant \dfrac{{{b^{n + 1}}}}{{{2^{n + 1}}}} + 1,\]只需证\[\dfrac{{n{b^n}\left( {2 - b} \right)}}{{{2^n} - {b^n}}} \leqslant \dfrac{{{b^{n + 1}}}}{{{2^{n + 1}}}} + 1,\]即证\[\dfrac{{n\left( {2 - b} \right)}}{{{2^n} - {b^n}}} \leqslant \dfrac{b}{{{2^{n + 1}}}} + \dfrac{1}{b^n},\]即证\[\dfrac{n}{{{2^{n - 1}} + {2^{n - 2}}b + {2^{n - 3}}{b^2} + \cdots + 2{b^{n - 2}} + {b^{n - 1}}}} \leqslant \dfrac{b}{{{2^{n + 1}}}} + \dfrac{1}{b^n},\]即证\[n \leqslant \dfrac{{{2^{n - 1}}}}{b^n} + \dfrac{{{2^{n - 2}}}}{{{b^{n - 1}}}} + \dfrac{{{2^{n - 3}}}}{{{b^{n - 2}}}} + \cdots + \dfrac{2}{b^2} + \dfrac{1}{b} + \dfrac{b}{2^2} + \dfrac{b^2}{2^3} + \cdots + \dfrac{{{b^{n - 1}}}}{2^n} + \dfrac{b^n}{{{2^{n + 1}}}},\]而上式右边\[\begin{split} &= \left( {\dfrac{{{2^{n - 1}}}}{b^n} + \dfrac{b^n}{{{2^{n + 1}}}}} \right) + \left( {\dfrac{{{2^{n - 2}}}}{{{b^{n - 1}}}} + \dfrac{{{b^{n - 1}}}}{2^n}} \right) + \cdots + \left( {\dfrac{2}{b^2} + \dfrac{b^2}{2^3}} \right) + \left( {\dfrac{1}{b} + \dfrac{b}{2^2}} \right) \\ &\geqslant 2\sqrt {\dfrac{{{2^{n - 1}}}}{b^n} \cdot \dfrac{b^n}{{{2^{n + 1}}}}} + 2\sqrt {\dfrac{{{2^{n - 2}}}}{{{b^{n - 1}}}} \cdot \dfrac{{{b^{n - 1}}}}{2^n}} + \cdots + 2\sqrt {\dfrac{2}{b^2} \cdot \dfrac{b^2}{2^3}} + 2\sqrt {\dfrac{1}{b} \cdot \dfrac{b}{2^2}} \\ &= n.\end{split}\]$\therefore $ 当 $b \ne 2$ 时,原不等式也成立,从而原不等式成立.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2