已知数列 $\{a_n\}$ 各项均不为 $0$,其前 $n$ 项和为 $S_n$,且对任意 $n \in \mathbb N^*$ 都有 $(1-p)S_n=p-pa_n$($p$ 为大于 $1$ 的常数),记$$f(n)=\dfrac {1+\mathrm C_n^1a_1+\mathrm C_n^2a_2+\cdots +\mathrm C_n^na_n}{2^nS_n}.$$
【难度】
【出处】
2010年全国高中数学联赛辽宁省预赛
【标注】
-
试比较 $f(n+1)$ 与 $\dfrac {p+1}{2p}f(n)$ 的大小($n \in \mathbb N^*$);标注答案$$f(n+1)<\dfrac {p+1}{2p}f(n) ( n \in \mathbb N^* )$$解析因为$$(1-p)S_n=p-pa_n,\quad \cdots \cdots \text{ ① }$$所以$$(1-p)S_{n+1}=p-pa_{n+1}.\quad \cdots \cdots \text{ ② }$$② $-$ ①,得$$(1-p)a_{n+1}=-pa_{n+1}+pa_n,$$即$$a_{n+1}=pa_n.$$在 ① 中,令 $n=1$,可得 $a_1=p$,所以 $\{a_n\}$ 是首项为 $a_1=p$,公比为 $p$ 的等比数列,于是 $a_n=p^n$,所以$$S_n=\dfrac {p(p^n-1)}{p-1}.$$又因为\[\begin{split}1+\mathrm C_n^1a_1+\mathrm C_n^2a_2+\cdots +\mathrm C_n^na_n&=1+p\mathrm C_n^1+p^2\mathrm C_n^2 +\cdots +p^n\mathrm C_n^n \\&=(p+1)^n,\end{split}\]所以\[\begin{split}f(n)&=\dfrac {1+\mathrm C_n^1a_1+\mathrm C_n^2a_2+\cdots +\mathrm C_n^na_n}{2^nS_n}\\&=\dfrac {p-1}{p}\cdot \dfrac {(p+1)^n}{2^n(p^n-1)},\end{split}\]则$$f(n+1)=\dfrac {p-1}{p}\cdot \dfrac {(p+1)^{n+1}}{2^{n+1}(p^{n+1}-1)},$$而$$\dfrac {p+1}{2p}f(n)=\dfrac {p-1}{p}\cdot \dfrac {(p+1)^{n+1}}{2^{n+1}(p^{n+1}-p)},$$且 $p>1$,所以$$p^{n+1}-1>p^{n+1}-p>0, \quad p-1>0,$$因此$$f(n+1)<\dfrac {p+1}{2p}f(n) ( n \in \mathbb N^* ).$$
-
求证:$$(2n-1)f(n)\leqslant \sum \limits_{k=1}^{2n-1}f(k)\leqslant \dfrac {p+1}{p-1}\left[1-\left(\dfrac {p+1}{2p}\right)^{2n-1}\right] (n \in \mathbb N^*).$$标注答案略解析由 $(1)$ 知,$$\begin{split}&f(1)=\dfrac {p+1}{2p},\\&f(n+1)<\dfrac {p+1}{2p}f(n) ( n \in \mathbb N^* ),\end{split}$$所以当 $n \geqslant 2$ 时,\[\begin{split}f(n)&<\dfrac {p+1}{2p}f(n-1)<\left(\dfrac {p+1}{2p}\right)^2f(n-2)\\&<\cdots \\&<\left(\dfrac {p+1}{2p}\right)^{n-1}f(1)<\left(\dfrac {p+1}{2p}\right)^n.\end{split}\]故\[\begin{split}f(1)+f(2)+\cdots +f(2n-1) &\leqslant \dfrac {p+1}{2p}+\left(\dfrac {p+1}{2p}\right)^2+\cdots +\left(\dfrac {p+1}{2p}\right)^{2n-1}\\&=\dfrac {p+1}{p-1}\left[1-\left(\dfrac {p+1}{2p}\right)^{2n-1}\right], \end{split}\]当且仅当 $n=1$ 时取等号.
另一方面,当 $n \geqslant 2$,$k=1,2,\cdots ,2n-1$ 时,\[\begin{split}f(k)+f(2n-k)&=\dfrac {p-1}{p}\left[\dfrac {(p+1)^k}{2^k(p^k-1)}+\dfrac {(p+1)^{2n-k}}{2^{2n-k}(p^{2n-k}-1)}\right]\\&\geqslant \dfrac {p-1}{p}\cdot 2\sqrt {\dfrac {(p+1)^k}{2^k(p^k-1)}\cdot\dfrac {(p+1)^{2n-k}}{2^{2n-k}(p^{2n-k}-1)}}\\&=\dfrac {p-1}{p}\cdot \dfrac {2(p+1)^n}{2^n}\cdot \sqrt {\dfrac {1}{(p^{k}-1)(p^{2n-k}-1)}}\\&=\dfrac {p-1}{p}\cdot \dfrac {2(p+1)^n}{2^n}\cdot \sqrt {\dfrac {1}{ p^{2n}-p^k-p^{2n-k}+1 }}.\end{split}\]因为$$p^k+p^{2n-k}\geqslant 2p^n,$$所以$$p^{2n}-p^k-p^{2n-k}+1\leqslant p^{2n}-2p^n+1=(p^n-1)^2,$$于是$$f(k)+f(2n-k)\geqslant \dfrac {p-1}{p}\cdot \dfrac {2(p+1)^n}{2^n(p^n-1)}=2f(n),$$当且仅当 $k=n$ 时取等号,所以\[\begin{split}\sum \limits_{k=1}^{2n-1}f(k)&=\dfrac 12 \sum \limits_{k=1}^{2n-1}[f(k)+f(2n-k)]\\&\geqslant \sum \limits_{k=1}^{2n-1}f(n)=(2n-1)f(n),\end{split}\]当且仅当 $n=1$ 时取等号.
综上所述,$$(2n-1)f(n)\leqslant \sum \limits_{k=1}^{2n-1}f(k)\leqslant \dfrac {p+1}{p-1}\left[1-\left(\dfrac {p+1}{2p}\right)^{2n-1}\right] (n \in \mathbb N^*).$$
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2