(19分)已知数列 $\{a_{n}\}$ 满足 $a_{1}=1$,$a_{n+1}=2a_{n}+1(n\in\mathbb N^{*})$.
【难度】
【出处】
2013年湖南省高中数学竞赛
【标注】
-
求数列 $\{a_{n}\}$ 的通项公式;标注答案$a_{n}=2^{n}-1(n\in\mathbb N^{*})$解析因为 $a_{n+1}=2a_{n}+1$,所以\[a_{n+1}+1=2(a_{n}+1)=2^{2}(a_{n-1}+1)=\cdots=2^{n+1},\]即 $a_{n}=2^{n}-1(n\in\mathbb N^{*})$.
-
证明:$\dfrac{n}{2}-\dfrac{1}{3}<\dfrac{a_{1}}{a_{2}}+\dfrac{a_{2}}{a_{3}}+\cdots+\dfrac{a_{n}}{a_{n+1}}<\dfrac{n}{2}$.标注答案略解析因为\[\begin{split}\dfrac{a_{k}}{a_{k+1}}&=\dfrac{2^{k}-1}{2^{k+1}-1}\\&=\dfrac{1}{2}-\dfrac{1}{2(2^{k+1}-1)}\\&=\dfrac{1}{2}-\dfrac{1}{3\cdot 2^{k}+2^{k}-2}\\&\geqslant \dfrac{1}{2}-\dfrac{1}{3}\cdot \dfrac{1}{2^{k}},(k=1,2,\cdots,n).\end{split}\]所以\[\begin{split}&\quad \dfrac{a_{1}}{a_{2}}+\dfrac{a_{2}}{a_{3}}+\cdots+\dfrac{a_{n}}{a_{n+1}}\\&\geqslant \dfrac{n}{2}-\dfrac{1}{3}\left(\dfrac{1}{2}+\dfrac{1}{2^{2}}+\cdots+\dfrac{1}{2^{n}}\right)\\&=\dfrac{n}{2}-\dfrac{1}{3}\left(1-\dfrac{1}{2^{n}}\right)\\&>\dfrac{n}{2}-\dfrac{1}{3}.\end{split}\]又因为\[\begin{split}\dfrac{a_{k}}{a_{k+1}}&=\dfrac{a_{k}-1}{2^{k+1}-1}\\&=\dfrac{2^{k}-1}{2\left(2^{k}-\dfrac{1}{2}\right)}\\&=\dfrac{1}{2}-\dfrac{1}{2(2^{k+1}-1)}<\dfrac{1}{2},(k=1,2,\cdots,n)\end{split}\]所以\[\dfrac{a_{1}}{a_{2}}+\dfrac{a_{2}}{a_{3}}+\cdots+\dfrac{a_{n}}{a_{n+1}}<\dfrac{n}{2}.\]综上可知,\[\dfrac{n}{2}-\dfrac{1}{3}<\dfrac{a_{1}}{a_{2}}+\dfrac{a_{2}}{a_{3}}+\cdots+\dfrac{a_{n}}{a_{n+1}}<\dfrac{n}{2}.\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2