已知四边形 $ABCD$ 是正方形,$P$ 是边 $CD$ 上一点(点 $P$ 不与顶点重合),延长 $AP$ 与 $BC$ 的延长线交于点 $Q$.设 $\triangle ABQ,\triangle PAD,\triangle PCQ$ 的内切圆半径分别是 $r_{1},r_{2},r_{3}$.
【难度】
【出处】
2016年全国高中数学联赛湖南省预赛
【标注】
-
证明:$r_{1}^{2}\geqslant 4r_{2}r_{3}$,并指出点 $P$ 在什么位置时等号成立;标注答案略解析如图所示,因为 $\triangle ABQ\sim \triangle PDA\sim \triangle PCQ$,所以\[r_{1}:r_{2}:r_{3}=AB:PD:PC.\]而\[AB=CD=PD+PC,\]故\[r_{1}=r_{2}+r_{3}\geqslant 2\sqrt{r_{2}r_{3}},\]即\[r_{1}^{2}\geqslant 4r_{2}r_{3}.\]当且仅当 $r_{2}=r_{3}$,即 $P$ 为 $CD$ 的中点时等号成立.
-
若 $AB=1$,试求证:$3-2\sqrt 2<r_{1}^{2}+r_{2}^{2}+r_{3}^{2}<\dfrac{1}{2}$.标注答案略解析由第 $(1)$ 小题得 $r_{1}=r_{2}+r_{3}$,所以有\[\begin{split}r_{1}^{2}+r_{2}^{2}+r_{3}^{2}&=(r_{2}+r_{3})^{2}+r_{2}^{2}+r_{3}^{2}\\&=\left(r_{2}+r_{2}\cdot \dfrac{1-PD}{PD}\right)^{2}+r_{2}^{2}+r_{2}^{2}\left(\dfrac{1-PD}{PD}\right)^{2}\\&=r_{2}^{2}\left[\dfrac{1}{PD^{2}}+1+\left(\dfrac{1}{PD}-1\right)^{2}\right]\\&=r_{2}^{2}\cdot 2\cdot \left(\dfrac{1}{PD^{2}}-\dfrac{1}{PD}+1\right)\\&=\left(\dfrac{1-PD-AP}{2}\right)^{2}\times 2\left(\dfrac{1}{PD^{2}}-\dfrac{1}{PD}+1\right)\\&=\dfrac{(1+PD-\sqrt{1+PD^{2}})^{2}}{2}\cdot \left(\dfrac{1}{PD^{2}}-\dfrac{1}{PD}+1\right).\end{split}\]记 $\angle DAP =\theta ,0<\theta <\dfrac{\pi}{4}$,则\[\begin{split}r_{1}^{2}+r_{2}^{2}+r_{3}^{2}&=\dfrac{1}{2}\left(1+\tan\theta-\dfrac{1}{\cos\theta}\right)^{2}(1+\cot^{2}\theta -\cos \theta )\\&=\dfrac{1}{2}\cdot \dfrac{(\cos\theta +\sin\theta -1)^{2}}{\cos^{2}\theta }\cdot \dfrac{\sin^{2}\theta +\cos^{2}\theta -\sin\theta \cos\theta }{\sin^{2}\theta}\\&=\dfrac{1}{2}\cdot \dfrac{(\cos\theta +\sin\theta -1)^{2}(1-\sin\theta\cos\theta )}{(\sin\theta\cos\theta)^{2}}.\end{split}\]令 $\sin\theta +\cos\theta =t$,则 $1<t<\sqrt 2$,且 $\sin\theta \cos\theta =\dfrac{t^{2}-1}{2}$.故\[r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=\dfrac{1}{2}\cdot \dfrac{(t-1)^{2}\left(1-\dfrac{t^{2}-1}{2}\right)}{\left(\dfrac{t^{2}-1}{2}\right)^{2}}=\dfrac{3-t^{2}}{(t+1)^{2}}.\]它是关于 $t$ 的单调递减函数.
所以,\[3-2\sqrt 2=\dfrac{3-(\sqrt 2)^{2}}{(\sqrt 2+1)^{2}}<r_{1}^{2}+r_{2}^{2}+r_{3}^{2}<\dfrac{3-1^{2}}{(1+1)^{2}}=\dfrac{1}{2}.\]即\[3-2\sqrt 2<r_{1}^{2}+r_{2}^{2}+r_{3}^{2}<\dfrac{1}{2}.\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2