某同学参加 $ 3 $ 门课程的考试.假设该同学第一门课程取得优秀成绩的概率为 $\dfrac{4}{5}$,第二、第三门课程取得优秀成绩的概率分别为 $p , q \left(p > q \right) $,且不同课程是否取得优秀成绩相互独立.记 $ ξ $ 为该生取得优秀成绩的课程数,其分布列为\[ \begin{array}{|c|c|c|c|c|} \hline
\xi & 0 &1&2 &3 \\ \hline
P &\frac{6}{125} & a & d & \frac{24}{125} \\ \hline
\end{array} \]
【难度】
【出处】
2010年高考北京卷(理)
【标注】
  1. 求该生至少有 $ 1 $ 门课程取得优秀成绩的概率;
    标注
    答案
    解析
    事件 ${A_i}$ 表示“该生第 $i$ 门课程取得优秀成绩”,$i =1,2,3$,由题意知\[P\left({A_1}\right) = \dfrac{4}{5} , P\left({A_2}\right) = p , P\left({A_3}\right) = q.\]由于事件“该生至少有 $ 1 $ 门课程取得优秀成绩”与事件“$\xi = 0$”是对立的,所以该生至少有 $ 1 $ 门课程取得优秀成绩的概率是\[1 - P\left(\xi = 0\right) = 1 - \dfrac{6}{{125}} = \dfrac{{119}}{{125}}.\]
  2. 求 $p$,$q$ 的值;
    标注
    答案
    解析
    由题意知
    $P\left(\xi = 0\right) = P\left({\overline {{A_1}}} \overline {{A_2}} \overline {{A_3}} \right) = \dfrac{1}{5}\left(1 - p\right)\left(1 - q\right) = \dfrac{6}{{125}}$,
    $P\left(\xi = 3\right) = P\left({A_1}{A_2}{A_3}\right) = \dfrac{4}{5}pq = \dfrac{{24}}{{125}}$,
    整理得 $pq = \dfrac{6}{{125}}$,$p + q = 1$.
    由 $p > q$,可得 $p = \dfrac{3}{5}$,$q = \dfrac{2}{5}$.
  3. 求数学期望 $E ξ$.
    标注
    答案
    解析
    由题意知\[ \begin{split}a & = P\left(\xi = 1\right) \\& = P\left({A_1}\overline {{A_2}} \overline {{A_3}} \right) + P\left(\overline {{A_1}} {A_2}\overline {{A_3}} \right) + P\left(\overline {{A_1}} \overline {{A_2}} {A_3}\right) \\&
    = \dfrac{4}{5}\left(1 - p\right)\left(1 - q\right) + \dfrac{1}{5}p\left(1 - q\right) + \dfrac{1}{5}\left(1 - p\right)q \\&
    = \dfrac{{37}}{{125}}. \\ b & = P\left(\xi = 2\right) \\& = 1 - P\left(\xi = 0\right) - P\left(\xi = 1\right) - P\left(\xi = 3\right) \\&
    = \dfrac{{58}}{{125}}, \\ E\xi & = 0 \times P\left(\xi = 0\right) + 1 \times P\left(\xi = 1\right) + 2P\left(\xi = 2\right) + 3P\left(\xi = 3\right) \\&
    = \dfrac{9}{5} . \end{split} \]
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2 问题3 答案3 解析3 备注3
0.120413s