已知函数 $f\left(x\right) = \left(1 + \cot x\right){\sin ^2}x + m\sin \left(x + \dfrac{{\mathrm{\pi}} }{4}\right)\sin \left(x - \dfrac{{\mathrm{\pi}} }{4}\right)$.
【难度】
【出处】
2010年高考江西卷(理)
【标注】
-
当 $m = 0$ 时,求 $f\left(x\right)$ 在区间 $\left[\dfrac{{\mathrm{\pi}} }{8},\dfrac{{3{\mathrm{\pi}} }}{4}\right]$ 上的取值范围;标注答案解析当 $m = 0$ 时,\[\begin{split}f\left(x\right) &= {\sin ^2}x + \sin x\cos x\\ &= \dfrac{1}{2}\left(\sin 2x - \cos 2x\right) + \dfrac{1}{2}\\& = \dfrac{{\sqrt 2 }}{2}\sin \left(2x - \dfrac{{\mathrm{\pi}} }{4}\right) + \dfrac{1}{2},\end{split}\]又由 $x \in \left[\dfrac{{\mathrm{\pi}} }{8},\dfrac{{3\pi }}{4}\right]$ 得\[2x - \dfrac{{\mathrm{\pi}} }{4} \in \left[0,\dfrac{{5{\mathrm{\pi}} }}{4}\right],\]所以\[\sin \left(2x - \dfrac{{\mathrm{\pi}} }{4}\right) \in \left[ - \dfrac{{\sqrt 2 }}{2},1\right],\]从而\[f\left(x\right) = \dfrac{{\sqrt 2 }}{2}\sin \left(2x - \dfrac{{\mathrm{\pi}} }{4}\right) + \dfrac{1}{2} \in \left[0,\dfrac{{1 + \sqrt 2 }}{2}\right].\]
-
当 $\tan \alpha = 2$ 时,$f\left(\alpha \right) = \dfrac{3}{5}$,求 $m$ 的值.标注答案解析由已知得\[\begin{split}f\left(x\right) &= {\sin ^2}x + \sin x\cos x - \dfrac{m}{2}\cos 2x\\& = \dfrac{{1 - \cos 2x}}{2} + \dfrac{1}{2}\sin 2x - \dfrac{m}{2}\cos 2x\\& = \dfrac{1}{2}\left[\sin 2x - \left(1 + m\right)\cos 2x\right] + \dfrac{1}{2},\end{split}\]由 $\tan \alpha = 2$,得\[\begin{split}\sin 2\alpha &= \dfrac{{2\sin \alpha \cos \alpha }}{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }} = \dfrac{{2\tan \alpha }}{{1 + {{\tan }^2}\alpha }} = \dfrac{4}{5},\\\cos 2\alpha &= \dfrac{{{{\cos }^2}\alpha - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }} = \dfrac{{1 - {{\tan }^2}\alpha }}{{1 + {{\tan }^2}\alpha }} = - \dfrac{3}{5},\end{split}\]所以\[\dfrac{3}{5} = \dfrac{1}{2}\left[\dfrac{4}{5} + \left(1 + m\right)\dfrac{3}{5}\right] + \dfrac{1}{2},\]解得 $m = - 2$.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2