设函数 $f\left( x \right) = 3\sin \left( {\omega x + \dfrac{{\mathrm{\pi}} }{6}} \right)$,$\omega >0$,$x \in \left( { - \infty , + \infty } \right)$,且以 $\dfrac{{\mathrm{\pi }}}{2}$ 为最小正周期.
【难度】
【出处】
2010年高考广东卷(文)
【标注】
-
求 $f\left( 0 \right)$;标注答案解析因为函数 $f\left( x \right) = 3\sin \left( {\omega x + \dfrac{{\mathrm{\pi }}}{6}} \right),$ 所以\[f\left( 0 \right) = 3\sin \left( {\omega \times 0 + \dfrac{{\mathrm{\pi }}}{6}} \right) = 3\sin \dfrac{{\mathrm{\pi }}}{6} = \dfrac{3}{2}.\]
-
求 $f\left( x \right)$ 的解析式;标注答案解析$\because$ 函数 $f\left( x \right) = 3\sin \left( {\omega x + \dfrac{{\mathrm{\pi}} }{6}} \right)$,$\omega >0$,$x \in \left( { - \infty , + \infty } \right)$,且以 $\dfrac{{\mathrm{\pi }}}{2}$ 为最小正周期.
$\therefore$ $\omega = 4$,$\therefore$ $f\left( x \right) = 3\sin \left( {4x + \dfrac{{\mathrm{\pi}} }{6}} \right)$. -
已知 $f\left( {\dfrac{\alpha }{4} + \dfrac{{\mathrm{\pi}} }{{12}}} \right) = \dfrac{9}{5}$,求 $\sin \alpha $ 的值.标注答案解析$\because$ $f\left(\dfrac{\alpha }{4} + \dfrac{{\mathrm{\pi }}}{{12}}\right) = \dfrac{9}{5}$,
$\therefore$ $3\sin \left(4\left(\dfrac{\alpha }{4} + \dfrac{{\mathrm{\pi}} }{{12}}\right) + \dfrac{{\mathrm{\pi}} }{6}\right) = \dfrac{9}{5}$,
$\therefore$ $\sin \left(\alpha + \dfrac{{\mathrm{\pi }}}{2}\right) = \dfrac{3}{5}$,
$\therefore$ $\cos \alpha = \dfrac{3}{5}$,$\therefore$ $1 - {\sin ^2}\alpha = \dfrac{9}{{25}}$,
$\therefore$ ${\sin ^2}\alpha = \dfrac{{16}}{{25}}$,$\therefore$ $\sin \alpha = \pm \dfrac{4}{5}$.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3