在 $\triangle ABC$ 中,角 $A,B,C$ 的对边分别是 $a,b,c$,已知 $\sin C + \cos C = 1 - \sin \dfrac{C}{2}$.
【难度】
【出处】
2011年高考江西卷(理)
【标注】
-
求 $\sin C$ 的值;标注答案解析已知 $\sin C + \cos C = 1 - \sin \dfrac{C}{2}$,所以\[\begin{split} 2\sin \frac{C}{2}\cos \frac{C}{2} + {\cos ^2}\frac{C}{2} - {\sin ^2}\frac{C}{2} = {\cos ^2}\frac{C}{2} + {\sin ^2}\frac{C}{2} - \sin \frac{C}{2}, \end{split}\]整理即有\[ \begin{split}2\sin \frac{C}{2}\cos \frac{C}{2} - 2{\sin ^2}\frac{C}{2} + \sin \frac{C}{2} = 0, \\ \Rightarrow \sin \frac{C}{2}\left( {2\cos \frac{C}{2} - 2\sin \frac{C}{2} + 1} \right) = 0. \end{split}\]又 $C$ 为 $\triangle ABC$ 中的角,所以 $\sin \dfrac{C}{2} \ne 0$,所以\[ \begin{split} \sin \frac{C}{2} - \cos \frac{C}{2} = \frac{1}{2} & \Rightarrow {\left( {\sin \frac{C}{2} - \cos \frac{C}{2}} \right)^2} = \frac{1}{4} \\& \Rightarrow - 2\sin \frac{C}{2}\cos \frac{C}{2} + {\cos ^2}\frac{C}{2} + {\sin ^2}\frac{C}{2} = \frac{1}{4} ,\end{split}\]所以\[2\sin \dfrac{C}{2}\cos \dfrac{C}{2} = \dfrac{3}{4} \Rightarrow \sin C = \dfrac{3}{4}.\]
-
若 ${a^2} + {b^2} = 4\left( {a + b} \right) - 8$,求边 $c$ 的值.标注答案解析因为 ${a^2} + {b^2} = 4\left( {a + b} \right) - 8$,所以\[\begin{split} {a^2} + {b^2} - 4a - 4b + 4 + 4 = 0 & \Rightarrow {\left( {a - 2} \right)^2} + {\left( {b - 2} \right)^2} = 0 \\& \Rightarrow a = 2,b = 2 .\end{split}\]$\because$ $ \sin \dfrac{C}{2} - \cos \dfrac{C}{2} = \dfrac{1}{2}>0 $,$\therefore$ $ \dfrac{\mathrm \pi}{4}<\dfrac{C}{2}<\dfrac{\mathrm \pi}{2}$,即 $ \dfrac{\mathrm \pi}{2}<C<{\mathrm \pi}$,$\therefore$ $\cos C<0 $,所以 $\cos C = -\sqrt {1 - {{\sin }^2}C} = -\dfrac{\sqrt 7 }{4}$,所以\[c = \sqrt {{a^2} + {b^2} - 2ab\cos C} = \sqrt 7 +1.\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2