设 $ f\left(x\right)=\ln x+{\sqrt{x}}-1 $,证明:
【难度】
【出处】
无
【标注】
-
当 $ x>1 $ 时,$ f\left(x\right)<{\dfrac{3}{2}}\left(x-1\right) $;标注答案解析证法一:记\[ g\left(x\right)=\ln x+{\sqrt{x}}-1-{\dfrac{3}{2}}\left(x-1\right), \]则当 $ x>1 $ 时,\[ g′\left(x\right)={\dfrac{1}{x}}+{\dfrac{1}{2{\sqrt{x}}}}-{\dfrac{3}{2}}<0.\]又 $g\left(1\right)=0$,所以当 $x>1$ 时,有 $ g\left(x\right)<0 $,即\[ f\left(x\right)<{\dfrac{3}{2}}\left(x-1\right). \]证法二:由均值不等式,当 $ x>1 $ 时,$ 2{\sqrt{x}}<x+1 $,故\[ {\sqrt{x}}<{\dfrac{x}{2}}+{\dfrac{1}{2}} \quad \cdots \cdots ① \]令 $ k\left(x\right)=\ln x-x+1 $,则\[ \begin{split}k\left(1\right)&=0,\\k′\left(x\right)&={\dfrac{1}{x}}-1<0,\end{split} \]故 $x>1$ 时,$ k\left(x\right)<0 $,即\[ \ln x<x-1 \quad \cdots \cdots ② \]由 ①② 得,当 $ x>1 $ 时,$ f\left(x\right)<{\dfrac{3}{2}}\left(x-1\right) $.
-
当 $ 1<x<3 $ 时,$ f\left(x\right)<{\dfrac{9\left(x-1\right)}{x+5}} $.标注答案解析证法一:记\[ h\left(x\right)=\left(x+5\right)f\left(x\right)-9\left(x-1\right), \]则当 $ 1<x<3 $ 时,由(1)得\[ \begin{split}h′\left(x\right) &=f\left(x\right)+\left(x+5\right)f ′\left(x\right)-9\\&<\dfrac{3}{2}\left(x-1\right)+\left(x+5\right) \left(\dfrac{1}{x}+\dfrac{1}{2{\sqrt{x}}} \right)-9\\&=\dfrac{1}{2x}\left[3x\left(x-1\right)+\left(x+5\right)\left(2+{\sqrt{x}}\right)-18x\right]\\&<\dfrac{1}{2x} \left[3x\left(x-1\right)+\left(x+5\right) \left(2+\dfrac{x}{2}+\dfrac{1}{2} \right)-18x\right] \\&=\dfrac{1}{4x}\left(7x^2-32x+25\right)<0.\end{split}\]因此 $ h\left(x\right) $ 在 $ \left(1,3\right) $ 内单调递减,又 $ h\left(1\right)=0 $,所以 $ h\left(x\right)<0 $,即\[ f\left(x\right)<{\dfrac{9\left(x-1\right)}{x+5}} .\]证法二:记\[ h\left(x\right)=f\left(x\right)-{\dfrac{9\left(x-1\right)}{x+5}} ,\]由(1)得\[\begin{split} h′\left(x\right) &=\dfrac{1}{x}+\dfrac{1}{2{\sqrt{x}}}-\dfrac{54}{\left(x+5\right)^2}\\&=\dfrac{2+\sqrt x}{2x}-\dfrac{54}{\left(x+5\right)^2}\\&<\dfrac{x+5}{4x}-\dfrac{54}{\left(x+5\right)^2}\\&=\dfrac{\left(x+5\right)^3-216x}{4x\left(x+5\right)^2}. \end{split}\]令 $ g\left(x\right)=\left(x+5\right)^3-216x $,则当 $ 1<x<3 $ 时,\[g′\left(x\right)=3\left(x+5\right)^2-216<0 .\]因此 $ g\left(x\right) $ 在 $ \left(1,3\right) $ 内单调递减,又由 $ g\left(1\right)=0 $,得 $ g\left(x\right)<0 $,所以 $ h′\left(x\right)<0 $.
因此 $ h\left(x\right) $ 在 $ \left(1,3\right) $ 内单调递减,又 $ h\left(1\right)=0 $,得 $ h\left(x\right)<0 $.
于是当 $ 1<x<3 $ 时,\[ f\left(x\right)<{\dfrac{9\left(x-1\right)}{x+5}} .\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2