设数列 $\left\{ {a_n} \right\}$ 的前 $n$ 项和 ${S_n}$ 满足 ${S_{n + 1}} = {a_2}{S_n} + {a_1}$,其中 ${a_2} \ne 0$.
【难度】
【出处】
无
【标注】
-
求证:$\left\{ {a_n} \right\}$ 是首项为 $ 1 $ 的等比数列;标注答案解析证法一:由 ${S_2} = {a_2}{S_1} + {a_1}$,得\[{a_1} + {a_2} = {a_2}{a_1} + {a_1},\]即 ${a_2} = {a_2}{a_1}$,因 ${a_2} \ne 0$,故 ${a_1} = 1$,得\[\dfrac{a_2}{a_1} = {a_2},\]又由题设条件知\[{S_{n + 2}} = {a_2}{S_{n + 1}} + {a_1},{S_{n + 1}} = {a_2}{S_n} + {a_1},\]两式相减得\[{S_{n + 2}} - {S_{n + 1}} = {a_2}\left( {{S_{n + 1}} - {S_n}} \right),\]即\[{a_{n + 2}} = {a_2}{a_{n + 1}},\]由 ${a_2} \ne 0$,知 ${a_{n + 1}} \ne 0$,因此\[\dfrac{{{a_{n + 2}}}}{{{a_{n + 1}}}} = {a_2},\]综上,$\dfrac{{{a_{n + 1}}}}{a_n} = {a_2}$ 对所有 $n \in {\mathbb{N}}^*$ 成立.
从而 $\left\{{a_n} \right\}$ 是首项为 $ 1 $,公比为 ${a_2}$ 的等比数列.
证法二:用数学归纳法证明 ${a_n} = a_2^{n - 1},n \in {\mathbb{N}}^*$.
当 $n = 1$ 时,由 ${S_2} = {a_2}{S_1} + {a_1}$,得\[{a_1} + {a_2} = {a_2}{a_1} + {a_1},\]即 ${a_2} = {a_2}{a_1}$,再由 ${a_2} \ne 0$,得 ${a_1} = 1$,所以结论成立.
假设 $n = k$ 时,结论成立,即 ${a_k} = a_2^{k - 1}$,那么\[\begin{split}{a_{k + 1}} &= {S_{k + 1}} - {S_k} \\&= \left( {{a_2}{S_k} + {a_1}} \right) - \left( {{a_2}{S_{k - 1}} + {a_1}} \right) \\&= {a_2}\left( {{S_k} - {S_{k - 1}}} \right) \\&= {a_2}{a_k} = a_2^k,\end{split}\]这就是说,当 $n = k + 1$ 时,结论也成立.
综上可得,对任意 $n \in {\mathbb{N}}^*,{a_n} = a_2^{n - 1}$.
因此 $\left\{ {a_n} \right\}$ 是首项为 $ 1 $,公比为 ${a_2}$ 的等比数列. -
若 ${a_2} > - 1$,求证:${S_n} \leqslant \dfrac{n}{2}\left({a_1} + {a_n}\right)$,并给出等号成立的充要条件.标注答案解析证法一:当 $n = 1$ 或 $2$ 时,显然\[{S_n} = \dfrac{n}{2}\left( {{a_1} + {a_n}} \right),\]等号成立.
设 $n \geqslant 3$,${a_2} > - 1$ 且 ${a_2} \ne 0$.由(1)知 ${a_1} = 1$,${a_n} = a_2^{n - 1}$,所以要证的不等式化为\[1 + {a_2} + a_2^2 + \cdots + a_2^{n - 1} \leqslant \dfrac{n}{2}\left( {1 + a_2^{n - 1}} \right)\left( {n \geqslant 3} \right),\]即证\[1 + {a_2} + a_2^2 + \cdots + a_2^n \leqslant \dfrac{n + 1}{2}\left( {1 + a_2^n} \right)\left( {n \geqslant 2} \right),\]当 ${a_2} = 1$ 时,上面不等式的等号成立.
当 $ - 1 < {a_2} < 1$ 时,$a_2^r - 1$ 与 $a_2^{n - r} - 1$ $\left( {r = 1,2, \cdots ,n - 1} \right)$ 同为负;
当 ${a_2} > 1$ 时,$a_2^r - 1$ 与 $a_2^{n - r} - 1\left( {r = 1,2, \cdots ,n - 1} \right)$ 同为正.
因此当 ${a_2} > - 1$ 且 ${a_2} \ne 1$ 时,总有 $\left( {a_2^r - 1} \right)\left( {a_2^{n - r} - 1} \right) > 0$,即\[a_2^r + a_2^{n - r} < 1 + a_2^n\left( {r = 1,2, \cdots ,n - 1} \right),\]上面不等式对 $r$ 从 $ 1 $ 到 $n - 1$ 求和得\[2\left( {{a_2} + a_2^2 + \cdots + a_2^{n - 1}} \right) < \left( {n - 1} \right)\left( {1 + a_2^n} \right),\]由此得\[1 + {a_2} + a_2^2 + \cdots + a_2^n < \frac{n + 1}{2}\left( {1 + a_2^n} \right),\]综上,当 ${a_2} > - 1$ 且 ${a_2} \ne 0$ 时,有 ${S_n} \leqslant \dfrac{n}{2}\left( {{a_1} + {a_n}} \right)$,当且仅当 $n = 1,2$ 或 ${a_2} = 1$ 时等号成立.
证法二:当 $n = 1$ 或 $ 2 $ 时,显然 ${S_n} = \dfrac{n}{2}\left( {{a_1} + {a_n}} \right)$,等号成立.
当 ${a_2} = 1$ 时,${S_n} = n = \dfrac{n}{2}\left( {{a_1} + {a_n}} \right)$,等号也成立.
当 ${a_2} \ne 1$ 时,由(1)知 ${S_n} = \dfrac{1 - a_2^n}{{1 - {a_2}}}$,${a_n} = a_2^{n - 1}$.下证:\[\dfrac{1 - a_2^n}{{1 - {a_2}}} < \dfrac{n}{2}\left( {1 + a_2^{n - 1}} \right),\left( {n \geqslant 3,{a_2} > - 1且{a_2} \ne 1} \right),\]当 $ - 1 < {a_2} < 1$ 时,上面不等式化为\[\left( {n - 2} \right)a_2^n + n{a_2} - na_2^{n - 1} < n - 2\left( {n \geqslant 3} \right),\]令\[f\left( {a_2} \right) = \left( {n - 2} \right)a_2^n + n{a_2} - na_2^{n - 1},\]当 $ - 1 < {a_2} < 0$ 时,$1 - a_2^{n - 2} > 0$,故\[f\left( {a_2} \right) = \left( {n - 2} \right)a_2^n + n{a_2}\left( {1 - a_2^{n - 2}} \right) < \left( {n - 2} \right){\left| {a_2} \right|^n} < n - 2,\]即所要证的不等式成立.
当 $0 < {a_2} < 1$ 时,求导得\[\begin{split}f'\left( {a_2} \right) &= n\left[ {\left( {n - 2} \right)a_2^{n - 1} - \left( {n - 1} \right)a_2^{n - 2} + 1} \right] \\&= ng\left( {a_2} \right),\end{split}\]其中\[g\left( {a_2} \right) = \left( {n - 2} \right)a_2^{n - 1} - \left( {n - 1} \right)a_2^{n - 2} + 1,\]则\[g'\left( {a_2} \right) = \left( {n - 2} \right)\left( {n - 1} \right)\left( {{a_2} - 1} \right)a_2^{n - 3} < 0,\]即 $g\left( {a_2} \right)$ 是 $\left( {0,1} \right)$ 上的减函数,故 $g\left( {a_2} \right) > g\left( 1 \right) = 0$,从而\[f'\left( {a_2} \right) = ng\left( {a_2} \right) > 0,\]进而 $f\left( {a_2} \right)$ 是 $\left( {0,1} \right)$ 上的增函数,因此\[f\left( {a_2} \right) < f\left( 1 \right) = n - 2,\]所要证的不等式成立.
当 ${a_2} > 1$ 时,令 $b = \dfrac{1}{a_2}$,则 $0 < b < 1$,由已证的结论知\[\dfrac{{1 - {{\left( {\dfrac{1}{a_2}} \right)}^n}}}{{1 - \dfrac{1}{a_2}}} < \dfrac{n}{2}\left[ {1 + {{\left( {\dfrac{1}{a_2}} \right)}^{n - 1}}} \right],\]两边同乘以 $a_2^{n - 1}$ 得所要证的不等式.
综上,当 ${a_2} > - 1$ 且 ${a_2} \ne 0$ 时,有 ${S_n} \leqslant \dfrac{n}{2}\left( {{a_1} + {a_n}} \right),$ 当且仅当 $n = 1,2$ 或 ${a_2} = 1$ 时等号成立.
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2