设 $ \left\{a_n\right\} $ 是公比不为 $ 1 $ 的等比数列,其前 $ n $ 项和为 $ S_n $,且 $ a_5,a_3,a_4 $ 成等差数列.
【难度】
【出处】
2012年高考陕西卷(理)
【标注】
  1. 求数列 $ \left\{a_n\right\} $ 的公比;
    标注
    答案
    解析
    设数列 $ {a_n} $ 的公比为 $ q\left(q\neq 0,q\neq 1\right) $,
    由 $ a_5,a_3,a_4 $ 成等差数列,得 $ 2a_3=a_5+a_4 $,即\[ 2a_1q^2=a_1q^4+a_1q^3 ,\]由 $ a_1\neq 0 ,q\neq 0$,得 $ q^2+q-2=0 $,解得\[ q_1=-2,q_2=1\left(舍去\right), \]所以\[ q=-2. \]
  2. 证明:对任意 $ k\in {\mathbb{N}}_+,S_{k+2},S_k,S_{k+1} $ 成等差数列.
    标注
    答案
    解析
    证法一:对任意 $ k\in {\mathbb{N}}_+ $,\[ \begin{split}S_{k+2}+S_{k+1}-2S_k &=\left(S_{k+2}-S_k\right)+\left(S_{k+1}-S_k\right)\\&=a_{k+1}+a_{k+2}+a_{k+1}\\&=2a_{k+1}+a_{k+1}\cdot \left(-2\right)\\&=0, \end{split}\]所以,对任意 $ k\in {\mathbb{N}}_+,S_{k+2},S_k,S_{k+1} $ 成等差数列.
    证法二:对任意 $ k\in {\mathbb{N}}_+ $,\[ \begin{split}2S_k&={\dfrac{2a_1\left(1-q^k\right)}{1-q}},\\S_{k+2}+S_{k+1}& ={\dfrac{a_1\left(1-q^{k+2}\right)}{1-q}}+{\dfrac{a_1\left(1-q^{k+1}\right)}{1-q}}\\&={\dfrac{a_1\left(2-q^{k+2}-q^{k+1}\right)}{1-q}},\\2S_k-\left(S_{k+2}+S_{k+1}\right) &={\dfrac{2a_1\left(1-q^k\right)}{1-q}}-{\dfrac{a_1\left(2-q^{k+2}-q^{k+1}\right)}{1-q}}\\&={\dfrac{a_1}{1-q}}\left[2\left(1-q^k\right)-\left(2-q^{k+2}-q^{k+1}\right)\right]\\&={\dfrac{a_1q^k}{1-q}}\left(q^2+q-2\right)\\&=0, \end{split}\]所以,对任意 $ k\in {\mathbb{N}}_+,S_{k+2},S_k,S_{k+1} $ 成等差数列.
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.120001s