已知等差数列 $\left\{ {a_n} \right\}$ 的前 $ 3 $ 项和为 $ 6 $,前 $ 8 $ 项和为 $ -4 $.
【难度】
【出处】
2010年高考四川卷(文)
【标注】
-
求数列 $\left\{ {a_n} \right\}$ 的通项公式;标注答案解析设 $\left\{ {a_n} \right\}$ 的公差为 $d$,由已知得\[{\begin{cases}
3{a_1} + 3d = 6 ,\\
8{a_1} + 28d = - 4 ,\\
\end{cases}}\]解得 ${a_1} = 3,d = - 1$.
故 ${a_n} = 3 - \left(n - 1\right) = 4 - n$. -
设 ${b_n} = \left(4 - {a_n}\right){q^{n - 1}}\left( q \ne 0,n \in {{\mathbb{N}}^ * }\right)$,求数列 $\left\{ {b_n} \right\}$ 的前 $ n $ 项和 ${S_n}$.标注答案解析由(1)可得 ${b_n} = n \cdot {q^{n - 1}}$,于是\[ {S_n} = 1 \cdot {q^0} + 2 \cdot {q^1} + 3 \cdot {q^2} + \cdots + \left(n - 1\right) \cdot {q^{n - 2}} + n \cdot {q^{n - 1}}.\]当 $q \ne 1$ 时,上式两边同乘以 $q$ 可得\[q{S_n} = 1 \cdot {q^1} + 2 \cdot {q^2} + 3 \cdot {q^3} + \cdots + \left(n - 1\right){q^{^{n - 1}}} + n \cdot {q^n}.\]上述两式相减可得\[\begin{split}\left(q - 1\right){S_n} &= n{q^n} - 1 - {q^1} - {q^2} - \cdots - {q^{n - 1}} \\&= n{q^n} - \dfrac{{{q^n} - 1}}{q - 1}
\\& = \dfrac{{1 - \left(n + 1\right){q^n} + n{q^{n + 1}}}}{q - 1},\end{split}\]所以\[{S_n} = \dfrac{{1 - \left(n + 1\right){q^n} + n{q^{n + 1}}}}{{{{\left(q - 1\right)}^2}}} ;\]当 $q = 1$ 时,则\[ {S_n} = 1 + 2 + 3 + \cdots + n = \dfrac{n\left(n + 1\right)}{2} .\]综上所述,\[{S_n} = {\begin{cases}\dfrac{n\left(n + 1\right)}{2}\mathop {}\limits_{} \mathop {}\limits_{} &\left(q = 1\right), \\
\dfrac{{n{q^{n + 1}} - \left(n + 1\right){q^n} + 1}}{{{{\left(q - 1\right)}^2}}}\mathop {}\limits_{} \mathop {}\limits_{} &\left(q \ne 1\right) .\\
\end{cases}}\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2