设数列 ${a_1}$,${a_2}$,$\cdots$,${a_n}$,$\cdots $ 中的每一项都不为 $ 0 $.证明:$\left\{ {a_n}\right\} $ 为等差数列的充分必要条件是:对任何 $n \in{\mathbb{ N}}$,都有 $\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + \cdots + \dfrac{1}{{{a_n}{a_{n + 1}}}} = \dfrac{n}{{{a_1}{a_{n + 1}}}}$.
【难度】
【出处】
无
【标注】
-
标注答案解析(先证必要性)
设数列 $\left\{ {a_n}\right\}$ 的公差为 $d$,若 $d = 0$,则所述等式显然成立,若 $d \ne 0$,则\[\begin{split}\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + \cdots + \dfrac{1}{{{a_n}{a_{n + 1}}}} &= \dfrac{1}{d}\left(\dfrac{{{a_2} - {a_1}}}{{{a_1}{a_2}}} + \dfrac{{{a_3} - {a_2}}}{{{a_2}{a_3}}} + \cdots + \dfrac{{{a_{n + 1}} - {a_n}}}{{{a_n}{a_{n +1}}}}\right) \\&= \dfrac{1}{d}\left[\left(\dfrac{1}{a_1} - \dfrac{1}{a_2}\right) + \left(\dfrac{1}{a_2} - \dfrac{1}{a_3}\right) + \cdots + \left(\dfrac{1}{a_n} - \dfrac{1}{{{a_{n + 1}}}}\right)\right] \\&= \dfrac{1}{d}\left(\dfrac{1}{a_1} - \dfrac{1}{{{a_{n + 1}}}}\right) = \dfrac{1}{d} \cdot\dfrac{{{a_{n + 1}} - {a_1}}}{{{a_1}{a_{n + 1}}}}\\&= \dfrac{n}{{{a_1}{a_{n + 1}}}}.\end{split}\](再证充分性)
证法一:(数学归纳法)设所述的等式对一切 $n \in {{\mathbb{N}}_ + }$ 都成立,首先,在等式\[\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} = \dfrac{2}{{{a_1}{a_3}}} \quad \cdots \cdots ① \]两端同乘 ${a_1}{a_2}{a_3}$,即得\[{a_1} + {a_3} = 2{a_2},\]所以 ${a_1},{a_2},{a_3}$ 成等差数列,记公差为 $d$,则\[{a_2} = {a_1} + d.\]假设 ${a_k} = {a_1} + \left(k - 1\right)d$,当 $n = k + 1$ 时,观察如下两等式:\[\begin{split}\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + \cdots + \dfrac{1}{{{a_{k - 1}}{a_k}}} = \dfrac{k - 1}{{{a_1}{a_k}}}, &\quad \cdots \cdots ② \\ \dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + \cdots + \dfrac{1}{{{a_{k - 1}}{a_k}}} + \dfrac{1}{{{a_k}{a_{k + 1}}}} = \dfrac{k}{{{a_1}{a_{k + 1}}}}, &\quad \cdots \cdots ③ \end{split}\]将 $ ② $ 代入 $ ③ $,得\[\dfrac{k - 1}{{{a_1}{a_k}}} + \dfrac{1}{{{a_k}{a_{k + 1}}}} = \dfrac{k}{{{a_1}{a_{k + 1}}}},\]在该式两端同乘 ${a_1}{a_k}{a_{k + 1}}$,得\[\left(k - 1\right){a_{k + 1}} + {a_1} = k{a_k}.\]将 ${a_k} = {a_1} + \left(k - 1\right)d$ 代入其中,整理后,得\[{a_{k + 1}} = {a_1} + kd.\]由数学归纳法原理知,对一切 $n \in {{\mathbb{N}}_ + }$ 都有\[{a_n} = {a_1} + \left(n - 1\right)d,\]所以 $\left\{ {a_n}\right\} $ 是公差为 $ d$ 的等差数列.
证法二:(直接证法)依题意有\[\begin{split}\dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + \cdots + \dfrac{1}{{{a_n}{a_{n + 1}}}} = \dfrac{n}{{{a_1}{a_{n + 1}}}}, &\quad \cdots \cdots ① \\ \dfrac{1}{{{a_1}{a_2}}} + \dfrac{1}{{{a_2}{a_3}}} + \cdots + \dfrac{1}{{{a_n}{a_{n + 1}}}} + \dfrac{1}{{{a_{n + 1}}{a_{n + 2}}}} = \dfrac{n + 1}{{{a_1}{a_{n + 2}}}}. &\quad \cdots \cdots ② \end{split}\]$ ② - ① $ 得\[\dfrac{1}{{{a_{n + 1}}{a_{n + 2}}}} = \dfrac{n + 1}{{{a_1}{a_{n + 2}}}} - \dfrac{n}{{{a_1}{a_{n + 1}}}},\]在上式两端同乘 ${a_1}{a_{n + 1}}{a_{n + 2}}$,得\[{a_1} = \left(n + 1\right){a_{n + 1}} - n{a_{n + 2}}, \quad \cdots \cdots ③ \]同理可得\[{a_1} = n{a_n} - \left(n - 1\right){a_{n + 1}}, \quad \cdots \cdots ④ \]$ ③ - ④ $ 得\[2n{a_{n + 1}} = n\left({a_{n + 2}} + {a_n}\right).\]即\[{a_{n + 2}} - {a_{n + 1}} = {a_{n + 1}} - {a_n},\]所以 $\left\{ {a_n}\right\} $ 是等差数列.
题目
问题1
答案1
解析1
备注1