已知函数 $f\left(x\right) = A\cos \left( {\dfrac{x}{4} + \dfrac{\mathrm \pi }{6}} \right)\left(x \in {\mathbb{R}}\right)$,且 $f\left( {\dfrac{\mathrm \pi }{3}} \right) = \sqrt 2 $.
【难度】
【出处】
2012年高考广东卷(文)
【标注】
  1. 求 $A$ 的值;
    标注
    答案
    解析
    由 $f\left(\dfrac{{\mathrm \pi } }{3}\right) = \sqrt 2 $,得 $ A\cos \dfrac{{\mathrm \pi } }{4}= \sqrt 2 $,$A= 2$.
  2. 设 $\alpha , \beta \in \left[ {0 , \dfrac{\mathrm \pi }{2}} \right]$,$f\left( {4\alpha + \dfrac{{4{\mathrm \pi }}}{3}} \right) = - \dfrac{30}{17},f\left( {4\beta - \dfrac{{2{\mathrm \pi }}}{3}} \right) = \dfrac{8}{5}$,求 $\cos \left(\alpha + \beta \right)$ 的值.
    标注
    答案
    解析
    \[\begin{split}f\left(4\alpha + \frac{{4{\mathrm \pi }}}{3}\right) = - \frac{30}{17} &\Rightarrow \cos \left(\alpha + \frac{\mathrm \pi }{2}\right) = - \frac{15}{17} \\&\Rightarrow \sin \alpha = \frac{15}{17},\cos \alpha = \frac{8}{17};\\
    f\left(4\beta - \frac{{2{\mathrm \pi }}}{3}\right) = \frac{8}{5} &\Rightarrow \cos \beta = \frac{4}{5},\sin \beta = \frac{3}{5}, \end{split}\]所以\[\begin{split}\cos \left(\alpha + \beta \right) &= \cos \alpha \cos \beta - \sin \alpha \sin \beta \\&= \frac{4}{5} \times \frac{8}{17} - \frac{3}{5} \times \frac{15}{17} \\&= - \frac{13}{85}.\end{split}\]
题目 问题1 答案1 解析1 备注1 问题2 答案2 解析2 备注2
0.116448s