在平面直角坐标系 $xOy$ 上,给定抛物线 $L:y = \dfrac{1}{4}{x^2}$.实数 $p$,$q$ 满足 ${p^2} - 4q \geqslant 0$,${x_1}$,${x_2}$ 是方程 ${x^2} - px + q = 0$ 的两根,记 $\varphi \left( {p,q} \right) = \max \left\{ {\left| {{x_1}} \right|,\left| {{x_2}} \right|} \right\}$.
【难度】
【出处】
无
【标注】
-
过点 $A\left( {{p_0},\dfrac{1}{4}p_0^2} \right)$ $ \left( {{p_0} \ne 0} \right)$ 作 $L$ 的切线交 $y$ 轴于点 $B$.证明:对线段 $AB$ 上的任一点 $Q\left( {p,q} \right)$,有 $\varphi \left( {p,q} \right) = \dfrac{{\left| {{p_0}} \right|}}{2}$;标注答案略解析显然 $A\left( {{p_0},\dfrac{1}{4}p_0^2} \right)$ 在抛物线 $L$ 上,\[y' = \dfrac{1}{2}x,\]故切线斜率为 $\dfrac{1}{2}{p_0}$.
$\therefore $ 过点 $A$ 的抛物线 $L$ 的切线方程为 $y - \dfrac{1}{4}p_0^2 = \dfrac{1}{2}{p_0}\left( {x - {p_0}} \right)$,即\[y = \dfrac{1}{2}{p_0}x - \dfrac{1}{4}p_0^2.\]若 ${p_0} > 0$,则线段 $AB$ 的方程为\[y = \dfrac{1}{2}{p_0}x - \dfrac{1}{4}p_0^2\left( {0 \leqslant x \leqslant {p_0}} \right);\]若 ${p_0} < 0$,则线段 $AB$ 的方程为\[y = \dfrac{1}{2}{p_0}x - \dfrac{1}{4}p_0^2\left( {{p_0} \leqslant x \leqslant 0} \right).\]又若 ${p^2} - 4q \geqslant 0$,则方程 ${x^2} - px + q = 0$ 的两根为\[\dfrac{{p \pm \sqrt {{p^2} - 4q} }}{2},\]若 $Q\left( {p,q} \right)$ 在线段 $AB$ 上,则\[q = \dfrac{1}{2}{p_0}p - \dfrac{1}{4}p_0^2,\]从而\[{p^2} - 4q = {\left( {p - {p_0}} \right)^2},\]$\therefore $\[{x_{1,2}} = \dfrac{{p \pm \left| {p - {p_0}} \right|}}{2},\]当 ${p_0} > 0$ 时,$0 \leqslant p \leqslant {p_0}$,则\[\begin{split}\varphi \left( {p,q} \right) & = \max \left\{ {\left| {{x_1}} \right|,\left| {{x_2}} \right|} \right\} \\& = \dfrac{{p + {p_0} - p}}{2} \\& = \dfrac{{{p_0}}}{2} \\& = \dfrac{{\left| {{p_0}} \right|}}{2};\end{split}\]当 ${p_0} < 0$ 时,${p_0} \leqslant p \leqslant 0$,则\[\begin{split}\varphi \left( {p,q} \right) & = \max \left\{ {\left| {{x_1}} \right|,\left| {{x_2}} \right|} \right\} \\& = \dfrac{{\left| {p - \left| {{p_0} - p} \right|} \right|}}{2} \\& = \dfrac{{\left| {p - \left( {p - {p_0}} \right)} \right|}}{2} \\& = \dfrac{{\left| {{p_0}} \right|}}{2}.\end{split}\]故对线段 $AB$ 上的任一点 $Q\left( {p,q} \right)$,\[\varphi \left( {p,q} \right) = \max \left\{ {\left| {{x_1}} \right|,\left| {{x_2}} \right|} \right\} = \dfrac{{\left| {{p_0}} \right|}}{2}.\] -
设 $M\left( {a,b} \right)$ 是定点,其中 $a$,$b$ 满足 ${a^2} - 4b > 0$,$a \ne 0$.过点 $M\left( {a,b} \right)$ 作 $L$ 的两条切线 ${l_1}$,${l_2}$,切点分别为 $E\left( {{p_1},\dfrac{1}{4}p_1^2} \right)$,$E'\left( {{p_2},\dfrac{1}{4}p_2^2} \right)$,${l_1}$,${l_2}$ 与 $y$ 分别交于 $F$,$F'$.线段 $EF$ 上异于两端点的点集记为 $X$.证明:$M\left( {a,b} \right) \in X \Leftrightarrow \left| {{p_1}} \right| > \left| {{p_2}} \right| \Leftrightarrow \varphi \left( {a,b} \right) = \dfrac{{\left| {{p_1}} \right|}}{2}$;标注答案略解析由(1)知,若 $M\left( {a,b} \right) \in X$,则\[\varphi \left( {a,b} \right) = \dfrac{{\left| {{p_1}} \right|}}{2},\]若 $M\left( {a,b} \right) \notin X$,根据(1)知,若 ${p_1} > 0$,$b = {\left( {a - {p_1}} \right)^2} $ $\left(a > {p_1} 或 a < 0 \right) $,\[{x_{1,2}} = \dfrac{{a \pm \left| {a - {p_1}} \right|}}{2},\]$\therefore $ 当 $a > {p_1}$ 时,\[\begin{split}\varphi \left( {a,b} \right) & = \dfrac{{a + \left( {a - {p_1}} \right)}}{2} \\& = a - \dfrac{{{p_1}}}{2} \\& \ne \dfrac{{\left| {{p_1}} \right|}}{2} \left(\because a \ne {p_1} \right) ;\end{split}\]当 $a < 0$ 时,\[\begin{split}\varphi \left( {a,b} \right) & = \dfrac{{\left| {a - \left( {{p_1} - a} \right)} \right|}}{2} \\& = \dfrac{{{p_1}}}{2} - a \\& \ne \dfrac{{\left| {{p_1}} \right|}}{2} \left(\because a \ne 0 \right) .\end{split}\]这就是说,当 $M\left( {a,b} \right) \notin X$ 时,$\varphi \left( {a,b} \right) \ne \dfrac{{\left| {{p_1}} \right|}}{2}$,
即是说,当 $\varphi \left( {a,b} \right) = \dfrac{{\left| {{p_1}} \right|}}{2}$ 时,$M\left( {a,b} \right) \in X$,
同理,当 ${p_1} < 0$ 时,照样可证得当 $\varphi \left( {a,b} \right) = \dfrac{{\left| {{p_1}} \right|}}{2}$ 时,$M\left( {a,b} \right) \in X$.
综上,\[M\left( {a,b} \right) \in X \Leftrightarrow \varphi \left( {a,b} \right) = \dfrac{{\left| {{p_1}} \right|}}{2}.\]显然,若 $M\left( {a,b} \right) \in X$,等价于 $M$ 在线段 $E'F'$ 的延长线上,不妨设 ${p_1} < 0$,则 ${p_2} > 0$(如图),$\therefore $ $b = {\left( {a - {p_1}} \right)^2}\left( {{p_1} < a < 0} \right)$,$b = {\left( {a - {p_2}} \right)^2}$,所以\[{\left( {a - {p_1}} \right)^2} = {\left( {a - {p_2}} \right)^2},\]即 $ - 2a{p_1} + p_1^2 = - 2a{p_2} + p_2^2$,从而\[\left( {{p_2} - {p_1}} \right)\left( {2a - {p_1} - {p_2}} \right) = 0,\]$\because $ ${p_2} - {p_1} \ne 0$,所以\[2a - {p_1} - {p_2} = 0,\]即\[ - {p_1} = {p_2} - 2a > {p_2},\]所以\[\left| {{p_1}} \right| > \left| {{p_2}} \right|,\]同理,当 ${p_1} > 0$ 时亦有 $\left| {{p_1}} \right| > \left| {{p_2}} \right|$,故\[M\left( {a,b} \right) \in X \Leftrightarrow \left| {{p_1}} \right| > \left| {{p_2}} \right| \Leftrightarrow \varphi \left( {a,b} \right) = \dfrac{{\left| {{p_1}} \right|}}{2}.\] -
设 $D = \left\{ {\left( {x,y} \right)\left|\right.y \leqslant x - 1,y \geqslant \dfrac{1}{4}{{\left( {x + 1} \right)}^2} - \dfrac{5}{4}} \right\}$,当点 $\left( {p,q} \right)$ 取遍 $D$ 时,求 $\varphi \left( {p,q} \right)$ 的最小值(记为 ${\varphi _{\min }}$)和最大值(记为 ${\varphi _{\max }}$).标注答案${\varphi _{\min }} = 1,{\varphi _{\max }} = \dfrac{5}{4}$解析如图,$D$ 表示直线 $y = x - 1$ 下方及抛物线 $y = \dfrac{1}{4}{\left( {x + 1} \right)^2} - \dfrac{5}{4}$ 上方的区域(含边界),易知 $A\left( {0, - 1} \right)$,$B\left( {2,1} \right)$,
当点 $\left( {p,q} \right) \in D$ 时,\[\dfrac{1}{4}{\left( {p + 1} \right)^2} - \dfrac{5}{4} \leqslant q \leqslant p - 1,\]从而\[{\left( {p - 2} \right)^2} \leqslant {p^2} - 4q \leqslant 4 - 2p\left( {0 \leqslant p \leqslant 2} \right),\]所以\[\dfrac{{p + \left| {p - 2} \right|}}{2} \leqslant \varphi \left( {p,q} \right) = \dfrac{{p + \sqrt {{p^2} - 4q} }}{2} \leqslant \dfrac{{p + \sqrt {4 - 2p} }}{2},\]所以 $\varphi \left( {p,q} \right) \geqslant \dfrac{{p + 2 - p}}{2} = 1$,${\varphi _{\min }} = 1$,设 $\sqrt {4 - 2p} = t \in \left[ {0,2} \right]$,则\[\begin{split}\dfrac{{p + \sqrt {4 - 2p} }}{2} & = \dfrac{{\dfrac{{4 - {t^2}}}{2} + t}}{2} \\& = \dfrac{{ - {t^2} + 2t + 4}}{4} \\& = \dfrac{{ - {{\left( {t - 1} \right)}^2} + 5}}{4} \\& \leqslant \dfrac{5}{4},\end{split}\]$\therefore $ ${\varphi _{\max }} = \dfrac{5}{4}$.
综上所述,\[{\varphi _{\min }} = 1,{\varphi _{\max }} = \dfrac{5}{4}.\]
题目
问题1
答案1
解析1
备注1
问题2
答案2
解析2
备注2
问题3
答案3
解析3
备注3